亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the shape formation problem within the 3D hybrid model, where a single agent with a strictly limited viewing range and the computational capacity of a deterministic finite automaton manipulates passive tiles through pick-up, movement, and placement actions. The goal is to reconfigure a set of tiles into a specific shape termed an icicle. The icicle, identified as a dense, hole-free structure, is strategically chosen to function as an intermediate shape for more intricate shape formation tasks. It is designed for easy exploration by a finite state agent, enabling the identification of tiles that can be lifted without breaking connectivity. Compared to the line shape, the icicle presents distinct advantages, including a reduced diameter and the presence of multiple removable tiles. We propose an algorithm that transforms an arbitrary initially connected tile structure into an icicle in $\mathcal{O}(n^3)$ steps, matching the runtime of the line formation algorithm from prior work. Our theoretical contribution is accompanied by an extensive experimental analysis, indicating that our algorithm decreases the diameter of tile structures on average.

相關內容

Model-induced distribution shifts (MIDS) occur as previous model outputs pollute new model training sets over generations of models. This is known as model collapse in the case of generative models, and performative prediction or unfairness feedback loops for supervised models. When a model induces a distribution shift, it also encodes its mistakes, biases, and unfairnesses into the ground truth of its data ecosystem. We introduce a framework that allows us to track multiple MIDS over many generations, finding that they can lead to loss in performance, fairness, and minoritized group representation, even in initially unbiased datasets. Despite these negative consequences, we identify how models might be used for positive, intentional, interventions in their data ecosystems, providing redress for historical discrimination through a framework called algorithmic reparation (AR). We simulate AR interventions by curating representative training batches for stochastic gradient descent to demonstrate how AR can improve upon the unfairnesses of models and data ecosystems subject to other MIDS. Our work takes an important step towards identifying, mitigating, and taking accountability for the unfair feedback loops enabled by the idea that ML systems are inherently neutral and objective.

Given the remarkable achievements in image generation through diffusion models, the research community has shown increasing interest in extending these models to video generation. Recent diffusion models for video generation have predominantly utilized attention layers to extract temporal features. However, attention layers are limited by their memory consumption, which increases quadratically with the length of the sequence. This limitation presents significant challenges when attempting to generate longer video sequences using diffusion models. To overcome this challenge, we propose leveraging state-space models (SSMs). SSMs have recently gained attention as viable alternatives due to their linear memory consumption relative to sequence length. In the experiments, we first evaluate our SSM-based model with UCF101, a standard benchmark of video generation. In addition, to investigate the potential of SSMs for longer video generation, we perform an experiment using the MineRL Navigate dataset, varying the number of frames to 64 and 150. In these settings, our SSM-based model can considerably save memory consumption for longer sequences, while maintaining competitive FVD scores to the attention-based models. Our codes are available at //github.com/shim0114/SSM-Meets-Video-Diffusion-Models.

Effective Receptive field (ERF) plays an important role in transform coding, which determines how much redundancy can be removed at most during transform and how many spatial priors can be utilized to synthesize textures during inverse transform. Existing methods rely on stacks of small kernels, whose ERF remains not large enough instead, or heavy non-local attention mechanisms, which limit the potential of high resolution image coding. To tackle this issue, we propose Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (LLIC). Specifically, for the first time in learned image compression community, we introduce a few large kernel-based depth-wise convolutions to reduce more redundancy while maintaining modest complexity. Due to wide range of image diversity, we propose to enhance the adaptability of convolutions via generating weights in a self-conditioned manner. The large kernels cooperate with non-linear embedding and gate mechanisms for better expressiveness and lighter point-wise interactions. We also investigate improved training techniques to fully exploit the potential of large kernels. In addition, to enhance the interactions among channels, we propose the adaptive channel-wise bit allocation via generating channel importance factor in a self-conditioned manner. To demonstrate the effectiveness of proposed transform coding, we align the entropy model to compare with existing transform methods and obtain models LLIC-STF, LLIC-ELIC, LLIC-TCM. Extensive experiments demonstrate our proposed LLIC models have significant improvements over corresponding baselines and achieve state-of-the-art performances and better trade-off between performance and complexity.

This paper presents a new approach for the detection of fake videos, based on the analysis of style latent vectors and their abnormal behavior in temporal changes in the generated videos. We discovered that the generated facial videos suffer from the temporal distinctiveness in the temporal changes of style latent vectors, which are inevitable during the generation of temporally stable videos with various facial expressions and geometric transformations. Our framework utilizes the StyleGRU module, trained by contrastive learning, to represent the dynamic properties of style latent vectors. Additionally, we introduce a style attention module that integrates StyleGRU-generated features with content-based features, enabling the detection of visual and temporal artifacts. We demonstrate our approach across various benchmark scenarios in deepfake detection, showing its superiority in cross-dataset and cross-manipulation scenarios. Through further analysis, we also validate the importance of using temporal changes of style latent vectors to improve the generality of deepfake video detection.

Uncertainty modeling in speaker representation aims to learn the variability present in speech utterances. While the conventional cosine-scoring is computationally efficient and prevalent in speaker recognition, it lacks the capability to handle uncertainty. To address this challenge, this paper proposes an approach for estimating uncertainty at the speaker embedding front-end and propagating it to the cosine scoring back-end. Experiments conducted on the VoxCeleb and SITW datasets confirmed the efficacy of the proposed method in handling uncertainty arising from embedding estimation. It achieved improvement with 8.5% and 9.8% average reductions in EER and minDCF compared to the conventional cosine similarity. It is also computationally efficient in practice.

This paper studies a multiplayer reach-avoid differential game in the presence of general polygonal obstacles that block the players' motions. The pursuers cooperate to protect a convex region from the evaders who try to reach the region. We propose a multiplayer onsite and close-to-goal (MOCG) pursuit strategy that can tell and achieve an increasing lower bound on the number of guaranteed defeated evaders. This pursuit strategy fuses the subgame outcomes for multiple pursuers against one evader with hierarchical optimal task allocation in the receding-horizon manner. To determine the qualitative subgame outcomes that who is the game winner, we construct three pursuit winning regions and strategies under which the pursuers guarantee to win against the evader, regardless of the unknown evader strategy. First, we utilize the expanded Apollonius circles and propose the onsite pursuit winning that achieves the capture in finite time. Second, we introduce convex goal-covering polygons (GCPs) and propose the close-to-goal pursuit winning for the pursuers whose visibility region contains the whole protected region, and the goal-visible property will be preserved afterwards. Third, we employ Euclidean shortest paths (ESPs) and construct a pursuit winning region and strategy for the non-goal-visible pursuers, where the pursuers are firstly steered to positions with goal visibility along ESPs. In each horizon, the hierarchical optimal task allocation maximizes the number of defeated evaders and consists of four sequential matchings: capture, enhanced, non-dominated and closest matchings. Numerical examples are presented to illustrate the results.

This paper presents hybrid numerical techniques for solving the Boltzmann transport equation formulated by means of low-order equations for angular moments of the angular flux. The moment equations are derived by the projection operator approach. The projected equations are closed exactly using a high-order transport solution. The low-order equations of the hybrid methods are approximated with a finite volume scheme of the second-order accuracy. Functionals defining the closures in the discretized low-order equations are calculated by Monte Carlo techniques. In this study, we analyze effects of statistical noise and discretization error on the accuracy of the hybrid transport solution.

Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.

北京阿比特科技有限公司