Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.
A key component of dyadic spoken interactions is the contextually relevant non-verbal gestures, such as head movements that reflect a listener's response to the interlocutor's speech. Although significant progress has been made in the context of generating co-speech gestures, generating listener's response has remained a challenge. We introduce the task of generating continuous head motion response of a listener in response to the speaker's speech in real time. To this end, we propose a graph-based end-to-end crossmodal model that takes interlocutor's speech audio as input and directly generates head pose angles (roll, pitch, yaw) of the listener in real time. Different from previous work, our approach is completely data-driven, does not require manual annotations or oversimplify head motion to merely nods and shakes. Extensive evaluation on the dyadic interaction sessions on the IEMOCAP dataset shows that our model produces a low overall error (4.5 degrees) and a high frame rate, thereby indicating its deployability in real-world human-robot interaction systems. Our code is available at - //github.com/bigzen/Active-Listener
Learning from demonstration is a promising way of teaching robots new skills. However, a central problem when executing acquired skills is to recognize risks and failures. This is essential since the demonstrations usually cover only a few mostly successful cases. Inevitable errors during execution require specific reactions that were not apparent in the demonstrations. In this paper, we focus on teaching the robot situational awareness from an initial skill demonstration via kinesthetic teaching and sparse labeling of autonomous skill executions as safe or risky. At runtime, our system, called ILeSiA, detects risks based on the perceived camera images by encoding the images into a low-dimensional latent space representation and training a classifier based on the encoding and the provided labels. In this way, ILeSiA boosts the confidence and safety with which robotic skills can be executed. Our experiments demonstrate that classifiers, trained with only a small amount of user-provided data, can successfully detect numerous risks. The system is flexible because the risk cases are defined by labeling data. This also means that labels can be added as soon as risks are identified by a human supervisor. We provide all code and data required to reproduce our experiments at imitrob.ciirc.cvut.cz/publications/ilesia.
The development and evaluation of Large Language Models (LLMs) have largely focused on individual capabilities. However, this overlooks the intersection of multiple abilities across different types of expertise that are often required for real-world tasks, which we term cross capabilities. To systematically explore this concept, we first define seven core individual capabilities and then pair them to form seven common cross capabilities, each supported by a manually constructed taxonomy. Building on these definitions, we introduce CrossEval, a benchmark comprising 1,400 human-annotated prompts, with 100 prompts for each individual and cross capability. To ensure reliable evaluation, we involve expert annotators to assess 4,200 model responses, gathering 8,400 human ratings with detailed explanations to serve as reference examples. Our findings reveal that, in both static evaluations and attempts to enhance specific abilities, current LLMs consistently exhibit the "Law of the Weakest Link," where cross-capability performance is significantly constrained by the weakest component. Specifically, across 58 cross-capability scores from 17 models, 38 scores are lower than all individual capabilities, while 20 fall between strong and weak, but closer to the weaker ability. These results highlight the under-performance of LLMs in cross-capability tasks, making the identification and improvement of the weakest capabilities a critical priority for future research to optimize performance in complex, multi-dimensional scenarios.
With the emergence of widely available powerful LLMs, disinformation generated by large Language Models (LLMs) has become a major concern. Historically, LLM detectors have been touted as a solution, but their effectiveness in the real world is still to be proven. In this paper, we focus on an important setting in information operations -- short news-like posts generated by moderately sophisticated attackers. We demonstrate that existing LLM detectors, whether zero-shot or purpose-trained, are not ready for real-world use in that setting. All tested zero-shot detectors perform inconsistently with prior benchmarks and are highly vulnerable to sampling temperature increase, a trivial attack absent from recent benchmarks. A purpose-trained detector generalizing across LLMs and unseen attacks can be developed, but it fails to generalize to new human-written texts. We argue that the former indicates domain-specific benchmarking is needed, while the latter suggests a trade-off between the adversarial evasion resilience and overfitting to the reference human text, with both needing evaluation in benchmarks and currently absent. We believe this suggests a re-consideration of current LLM detector benchmarking approaches and provides a dynamically extensible benchmark to allow it (//github.com/Reliable-Information-Lab-HEVS/benchmark_llm_texts_detection).
Metamodels, or the regression analysis of Monte Carlo simulation results, provide a powerful tool to summarize simulation findings. However, an underutilized approach is the multilevel metamodel (MLMM) that accounts for the dependent data structure that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can improve the interpretability of simulation results, better account for complex simulation designs, and provide new insights into the generalizability of simulation findings.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.