亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have gained significant popularity in the last few years due to their performance in diverse tasks such as translation, prediction, or content generation. At the same time, the research community has shown that LLMs are susceptible to various attacks but can also improve the security of diverse systems. However, besides enabling more secure systems, how well do open source LLMs behave as covertext distributions to, e.g., facilitate censorship resistant communication? In this paper, we explore the capabilities of open-source LLM-based covert channels. We approach this problem from the experimental side by empirically measuring the security vs. capacity of the open-source LLM model (Llama-7B) to assess how well it performs as a covert channel. Although our results indicate that such channels are not likely to achieve high practical bitrates, which depend on message length and model entropy, we also show that the chance for an adversary to detect covert communication is low. To ensure that our results can be used with the least effort as a general reference, we employ a conceptually simple and concise scheme and only assume public models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · 軟件工程 ·
2024 年 7 月 3 日

In this class notes students can learn how B specifications can be translated into $\{log$\}$ forgrams, how these forgrams can be executed and how they can be proved to verify some properties.

The $\ell_p$ subspace approximation problem is an NP-hard low rank approximation problem that generalizes the median hyperplane problem ($p = 1$), principal component analysis ($p = 2$), and the center hyperplane problem ($p = \infty$). A popular approach to cope with the NP-hardness of this problem is to compute a strong coreset, which is a small weighted subset of the input points which simultaneously approximates the cost of every $k$-dimensional subspace, typically to $(1+\varepsilon)$ relative error for a small constant $\varepsilon$. We obtain the first algorithm for constructing a strong coreset for $\ell_p$ subspace approximation with a nearly optimal dependence on the rank parameter $k$, obtaining a nearly linear bound of $\tilde O(k)\mathrm{poly}(\varepsilon^{-1})$ for $p<2$ and $\tilde O(k^{p/2})\mathrm{poly}(\varepsilon^{-1})$ for $p>2$. Prior constructions either achieved a similar size bound but produced a coreset with a modification of the original points [SW18, FKW21], or produced a coreset of the original points but lost $\mathrm{poly}(k)$ factors in the coreset size [HV20, WY23]. Our techniques also lead to the first nearly optimal online strong coresets for $\ell_p$ subspace approximation with similar bounds as the offline setting, resolving a problem of [WY23]. All prior approaches lose $\mathrm{poly}(k)$ factors in this setting, even when allowed to modify the original points.

Large pre-trained Vision-Language Models (VLMs), like CLIP, exhibit strong generalization ability to downstream tasks but struggle in few-shot scenarios. Existing prompting techniques primarily focus on global text and image representations, yet overlooking multi-modal attribute characteristics. This limitation hinders the model's ability to perceive fine-grained visual details and restricts its generalization ability to a broader range of unseen classes. To address this issue, we propose a Multi-modal Attribute Prompting method (MAP) by jointly exploring textual attribute prompting, visual attribute prompting, and attribute-level alignment. The proposed MAP enjoys several merits. First, we introduce learnable visual attribute prompts enhanced by textual attribute semantics to adaptively capture visual attributes for images from unknown categories, boosting fine-grained visual perception capabilities for CLIP. Second, the proposed attribute-level alignment complements the global alignment to enhance the robustness of cross-modal alignment for open-vocabulary objects. To our knowledge, this is the first work to establish cross-modal attribute-level alignment for CLIP-based few-shot adaptation. Extensive experimental results on 11 datasets demonstrate that our method performs favorably against state-of-the-art approaches.

Adversarial examples have shown a powerful ability to make a well-trained model misclassified. Current mainstream adversarial attack methods only consider one of the distortions among $L_0$-norm, $L_2$-norm, and $L_\infty$-norm. $L_0$-norm based methods cause large modification on a single pixel, resulting in naked-eye visible detection, while $L_2$-norm and $L_\infty$-norm based methods suffer from weak robustness against adversarial defense since they always diffuse tiny perturbations to all pixels. A more realistic adversarial perturbation should be sparse and imperceptible. In this paper, we propose a novel $L_p$-norm distortion-efficient adversarial attack, which not only owns the least $L_2$-norm loss but also significantly reduces the $L_0$-norm distortion. To this aim, we design a new optimization scheme, which first optimizes an initial adversarial perturbation under $L_2$-norm constraint, and then constructs a dimension unimportance matrix for the initial perturbation. Such a dimension unimportance matrix can indicate the adversarial unimportance of each dimension of the initial perturbation. Furthermore, we introduce a new concept of adversarial threshold for the dimension unimportance matrix. The dimensions of the initial perturbation whose unimportance is higher than the threshold will be all set to zero, greatly decreasing the $L_0$-norm distortion. Experimental results on three benchmark datasets show that under the same query budget, the adversarial examples generated by our method have lower $L_0$-norm and $L_2$-norm distortion than the state-of-the-art. Especially for the MNIST dataset, our attack reduces 8.1$\%$ $L_2$-norm distortion meanwhile remaining 47$\%$ pixels unattacked. This demonstrates the superiority of the proposed method over its competitors in terms of adversarial robustness and visual imperceptibility.

Estimating parameters of functional ARMA, GARCH and invertible processes requires estimating lagged covariance and cross-covariance operators of Cartesian product Hilbert space-valued processes. Asymptotic results have been derived in recent years, either less generally or under a strict condition. This article derives upper bounds of the estimation errors for such operators based on the mild condition Lp-m-approximability for each lag, Cartesian power(s) and sample size, where the two processes can take values in different spaces in the context of lagged cross-covariance operators. Implications of our results on eigenelements, parameters in functional AR(MA) models and other general situations are also discussed.

Over one in five adults in the US lives with a mental illness. In the face of a shortage of mental health professionals and offline resources, online short-form video content has grown to serve as a crucial conduit for disseminating mental health help and resources. However, the ease of content creation and access also contributes to the spread of misinformation, posing risks to accurate diagnosis and treatment. Detecting and understanding engagement with such content is crucial to mitigating their harmful effects on public health. We perform the first quantitative study of the phenomenon using YouTube Shorts and Bitchute as the sites of study. We contribute MentalMisinfo, a novel labeled mental health misinformation (MHMisinfo) dataset of 739 videos (639 from Youtube and 100 from Bitchute) and 135372 comments in total, using an expert-driven annotation schema. We first found that few-shot in-context learning with large language models (LLMs) are effective in detecting MHMisinfo videos. Next, we discover distinct and potentially alarming linguistic patterns in how audiences engage with MHMisinfo videos through commentary on both video-sharing platforms. Across the two platforms, comments could exacerbate prevailing stigma with some groups showing heightened susceptibility to and alignment with MHMisinfo. We discuss technical and public health-driven adaptive solutions to tackling the "epidemic" of mental health misinformation online.

The rapid advancement of Generative AI (GenAI) technologies offers transformative opportunities within Australia's critical technologies of national interest while introducing unique security challenges. This paper presents SecGenAI, a comprehensive security framework for cloud-based GenAI applications, with a focus on Retrieval-Augmented Generation (RAG) systems. SecGenAI addresses functional, infrastructure, and governance requirements, integrating end-to-end security analysis to generate specifications emphasizing data privacy, secure deployment, and shared responsibility models. Aligned with Australian Privacy Principles, AI Ethics Principles, and guidelines from the Australian Cyber Security Centre and Digital Transformation Agency, SecGenAI mitigates threats such as data leakage, adversarial attacks, and model inversion. The framework's novel approach combines advanced machine learning techniques with robust security measures, ensuring compliance with Australian regulations while enhancing the reliability and trustworthiness of GenAI systems. This research contributes to the field of intelligent systems by providing actionable strategies for secure GenAI implementation in industry, fostering innovation in AI applications, and safeguarding national interests.

In this paper we examine the limitations of Large Language Models (LLMs) for complex reasoning tasks. While current approaches leverage formal languages as intermediate representation of reasoning problems, they struggle with generating intermediate formal specifications and refining these representations. To address these issues, this paper proposes Logic-LM++, an improvement on Logic-LM. It uses the ability of LLMs to do pairwise comparisons, allowing the evaluation of the refinements suggested by the LLM. The paper demonstrates that Logic-LM++ outperforms Logic-LM and LLM based techniques on natural language reasoning tasks on two datasets, FOLIO and AR-LSAT. Logic-LM++ show an average improvement of 13.5% on standard prompting, 11% on chain of thought prompting and 5% on Logic-LM.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

北京阿比特科技有限公司