Many data mining tasks rely on graphs to model relational structures among individuals (nodes). Since relational data are often sensitive, there is an urgent need to evaluate the privacy risks in graph data. One famous privacy attack against data analysis models is the model inversion attack, which aims to infer sensitive data in the training dataset and leads to great privacy concerns. Despite its success in grid-like domains, directly applying model inversion attacks on non-grid domains such as graph leads to poor attack performance. This is mainly due to the failure to consider the unique properties of graphs. To bridge this gap, we conduct a systematic study on model inversion attacks against Graph Neural Networks (GNNs), one of the state-of-the-art graph analysis tools in this paper. Firstly, in the white-box setting where the attacker has full access to the target GNN model, we present GraphMI to infer the private training graph data. Specifically, in GraphMI, a projected gradient module is proposed to tackle the discreteness of graph edges and preserve the sparsity and smoothness of graph features; a graph auto-encoder module is used to efficiently exploit graph topology, node attributes, and target model parameters for edge inference; a random sampling module can finally sample discrete edges. Furthermore, in the hard-label black-box setting where the attacker can only query the GNN API and receive the classification results, we propose two methods based on gradient estimation and reinforcement learning (RL-GraphMI). Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
Locally differentially private (LDP) graph analysis allows private analysis on a graph that is distributed across multiple users. However, such computations are vulnerable to data poisoning attacks where an adversary can skew the results by submitting malformed data. In this paper, we formally study the impact of poisoning attacks for graph degree estimation protocols under LDP. We make two key technical contributions. First, we observe LDP makes a protocol more vulnerable to poisoning -- the impact of poisoning is worse when the adversary can directly poison their (noisy) responses, rather than their input data. Second, we observe that graph data is naturally redundant -- every edge is shared between two users. Leveraging this data redundancy, we design robust degree estimation protocols under LDP that can significantly reduce the impact of data poisoning and compute degree estimates with high accuracy. We evaluate our proposed robust degree estimation protocols under poisoning attacks on real-world datasets to demonstrate their efficacy in practice.
Graph neural network (GNN) with a powerful representation capability has been widely applied to various areas, such as biological gene prediction, social recommendation, etc. Recent works have exposed that GNN is vulnerable to the backdoor attack, i.e., models trained with maliciously crafted training samples are easily fooled by patched samples. Most of the proposed studies launch the backdoor attack using a trigger that either is the randomly generated subgraph (e.g., erd\H{o}s-r\'enyi backdoor) for less computational burden, or the gradient-based generative subgraph (e.g., graph trojaning attack) to enable a more effective attack. However, the interpretation of how is the trigger structure and the effect of the backdoor attack related has been overlooked in the current literature. Motifs, recurrent and statistically significant sub-graphs in graphs, contain rich structure information. In this paper, we are rethinking the trigger from the perspective of motifs, and propose a motif-based backdoor attack, denoted as Motif-Backdoor. It contributes from three aspects. (i) Interpretation: it provides an in-depth explanation for backdoor effectiveness by the validity of the trigger structure from motifs, leading to some novel insights, e.g., using subgraphs that appear less frequently in the graph as the trigger can achieve better attack performance. (ii) Effectiveness: Motif-Backdoor reaches the state-of-the-art (SOTA) attack performance in both black-box and defensive scenarios. (iii) Efficiency: based on the graph motif distribution, Motif-Backdoor can quickly obtain an effective trigger structure without target model feedback or subgraph model generation. Extensive experimental results show that Motif-Backdoor realizes the SOTA performance on three popular models and four public datasets compared with five baselines.
Mobile edge devices see increased demands in deep neural networks (DNNs) inference while suffering from stringent constraints in computing resources. Split computing (SC) emerges as a popular approach to the issue by executing only initial layers on devices and offloading the remaining to the cloud. Prior works usually assume that SC offers privacy benefits as only intermediate features, instead of private data, are shared from devices to the cloud. In this work, we debunk this SC-induced privacy protection by (i) presenting a novel data-free model inversion method and (ii) demonstrating sample inversion where private data from devices can still be leaked with high fidelity from the shared feature even after tens of neural network layers. We propose Divide-and-Conquer Inversion (DCI) which partitions the given deep network into multiple shallow blocks and inverts each block with an inversion method. Additionally, cycle-consistency technique is introduced by re-directing the inverted results back to the model under attack in order to better supervise the training of the inversion modules. In contrast to prior art based on generative priors and computation-intensive optimization in deriving inverted samples, DCI removes the need for real device data and generative priors, and completes inversion with a single quick forward pass over inversion modules. For the first time, we scale data-free and sample-specific inversion to deep architectures and large datasets for both discriminative and generative networks. We perform model inversion attack to ResNet and RepVGG models on ImageNet and SNGAN on CelebA and recover the original input from intermediate features more than 40 layers deep into the network.
Graph neural networks (GNNs) have found successful applications in various graph-related tasks. However, recent studies have shown that many GNNs are vulnerable to adversarial attacks. In a vast majority of existing studies, adversarial attacks on GNNs are launched via direct modification of the original graph such as adding/removing links, which may not be applicable in practice. In this paper, we focus on a realistic attack operation via injecting fake nodes. The proposed Global Attack strategy via Node Injection (GANI) is designed under the comprehensive consideration of an unnoticeable perturbation setting from both structure and feature domains. Specifically, to make the node injections as imperceptible and effective as possible, we propose a sampling operation to determine the degree of the newly injected nodes, and then generate features and select neighbors for these injected nodes based on the statistical information of features and evolutionary perturbations obtained from a genetic algorithm, respectively. In particular, the proposed feature generation mechanism is suitable for both binary and continuous node features. Extensive experimental results on benchmark datasets against both general and defended GNNs show strong attack performance of GANI. Moreover, the imperceptibility analyses also demonstrate that GANI achieves a relatively unnoticeable injection on benchmark datasets.
We present a Federated Learning (FL) based solution for building a distributed classifier capable of detecting URLs containing GDPR-sensitive content related to categories such as health, sexual preference, political beliefs, etc. Although such a classifier addresses the limitations of previous offline/centralised classifiers,it is still vulnerable to poisoning attacks from malicious users that may attempt to reduce the accuracy for benign users by disseminating faulty model updates. To guard against this, we develop a robust aggregation scheme based on subjective logic and residual-based attack detection. Employing a combination of theoretical analysis, trace-driven simulation, as well as experimental validation with a prototype and real users, we show that our classifier can detect sensitive content with high accuracy, learn new labels fast, and remain robust in view of poisoning attacks from malicious users, as well as imperfect input from non-malicious ones.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.