This work describes a Bayesian framework for reconstructing the boundaries that represent targeted features in an image, as well as the regularity (i.e., roughness vs. smoothness) of these boundaries.This regularity often carries crucial information in many inverse problem applications, e.g., for identifying malignant tissues in medical imaging. We represent the boundary as a radial function and characterize the regularity of this function by means of its fractional differentiability. We propose a hierarchical Bayesian formulation which, simultaneously, estimates the function and its regularity, and in addition we quantify the uncertainties in the estimates. Numerical results suggest that the proposed method is a reliable approach for estimating and characterizing object boundaries in imaging applications, as illustrated with examples from X-ray CT and image inpainting. We also show that our method is robust under various noise types, noise levels, and incomplete data.
Processing-using-DRAM (PUD) architectures impose a restrictive data layout and alignment for their operands, where source and destination operands (i) must reside in the same DRAM subarray (i.e., a group of DRAM rows sharing the same row buffer and row decoder) and (ii) are aligned to the boundaries of a DRAM row. However, standard memory allocation routines (i.e., malloc, posix_memalign, and huge pages-based memory allocation) fail to meet the data layout and alignment requirements for PUD architectures to operate successfully. To allow the memory allocation API to influence the OS memory allocator and ensure that memory objects are placed within specific DRAM subarrays, we propose a new lazy data allocation routine (in the kernel) for PUD memory objects called PUMA. The key idea of PUMA is to use the internal DRAM mapping information together with huge pages and then split huge pages into finer-grained allocation units that are (i) aligned to the page address and size and (ii) virtually contiguous. We implement PUMA as a kernel module using QEMU and emulate a RISC-V machine running Fedora 33 with v5.9.0 Linux Kernel. We emulate the implementation of a PUD system capable of executing row copy operations (as in RowClone) and Boolean AND/OR/NOT operations (as in Ambit). In our experiments, such an operation is performed in the host CPU if a given operation cannot be executed in our PUD substrate (due to data misalignment). PUMA significantly outperforms the baseline memory allocators for all evaluated microbenchmarks and allocation sizes.
Despite advancements in text-to-image generation (T2I), prior methods often face text-image misalignment problems such as relation confusion in generated images. Existing solutions involve cross-attention manipulation for better compositional understanding or integrating large language models for improved layout planning. However, the inherent alignment capabilities of T2I models are still inadequate. By reviewing the link between generative and discriminative modeling, we posit that T2I models' discriminative abilities may reflect their text-image alignment proficiency during generation. In this light, we advocate bolstering the discriminative abilities of T2I models to achieve more precise text-to-image alignment for generation. We present a discriminative adapter built on T2I models to probe their discriminative abilities on two representative tasks and leverage discriminative fine-tuning to improve their text-image alignment. As a bonus of the discriminative adapter, a self-correction mechanism can leverage discriminative gradients to better align generated images to text prompts during inference. Comprehensive evaluations across three benchmark datasets, including both in-distribution and out-of-distribution scenarios, demonstrate our method's superior generation performance. Meanwhile, it achieves state-of-the-art discriminative performance on the two discriminative tasks compared to other generative models.
Graphic designers often get inspiration through the recombination of references. Our formative study (N=6) reveals that graphic designers focus on conceptual keywords during this process, and want support for discovering the keywords, expanding them, and exploring diverse recombination options of them, while still having room for designers' creativity. We propose CreativeConnect, a system with generative AI pipelines that helps users discover useful elements from the reference image using keywords, recommends relevant keywords, generates diverse recombination options with user-selected keywords, and shows recombinations as sketches with text descriptions. Our user study (N=16) showed that CreativeConnect helped users discover keywords from the reference and generate multiple ideas based on them, ultimately helping users produce more design ideas with higher self-reported creativity compared to the baseline system without generative pipelines. While CreativeConnect was shown effective in ideation, we discussed how CreativeConnect can be extended to support other types of tasks in creativity support.
Adversarial attacks on Latent Diffusion Model (LDM), the state-of-the-art image generative model, have been adopted as effective protection against malicious finetuning of LDM on unauthorized images. We show that these attacks add an extra error to the score function of adversarial examples predicted by LDM. LDM finetuned on these adversarial examples learns to lower the error by a bias, from which the model is attacked and predicts the score function with biases. Based on the dynamics, we propose to improve the adversarial attack on LDM by Attacking with Consistent score-function Errors (ACE). ACE unifies the pattern of the extra error added to the predicted score function. This induces the finetuned LDM to learn the same pattern as a bias in predicting the score function. We then introduce a well-crafted pattern to improve the attack. Our method outperforms state-of-the-art methods in adversarial attacks on LDM.
Virtual reality (VR) is a promising data engine for autonomous driving (AD). However, data fidelity in this paradigm is often degraded by VR inconsistency, for which the existing VR approaches become ineffective, as they ignore the inter-dependency between low-level VR synchronizer designs (i.e., data collector) and high-level VR synthesizer designs (i.e., data processor). This paper presents a seamless virtual reality SVR platform for AD, which mitigates such inconsistency, enabling VR agents to interact with each other in a shared symbiotic world. The crux to SVR is an integrated synchronizer and synthesizer IS2 design, which consists of a drift-aware lidar-inertial synchronizer for VR colocation and a motion-aware deep visual synthesis network for augmented reality image generation. We implement SVR on car-like robots in two sandbox platforms, achieving a cm-level VR colocalization accuracy and 3.2% VR image deviation, thereby avoiding missed collisions or model clippings. Experiments show that the proposed SVR reduces the intervention times, missed turns, and failure rates compared to other benchmarks. The SVR-trained neural network can handle unseen situations in real-world environments, by leveraging its knowledge learnt from the VR space.
Computer models play a crucial role in numerous scientific and engineering domains. To ensure the accuracy of simulations, it is essential to properly calibrate the input parameters of these models through statistical inference. While Bayesian inference is the standard approach for this task, employing Markov Chain Monte Carlo methods often encounters computational hurdles due to the costly evaluation of likelihood functions and slow mixing rates. Although variational inference (VI) can be a fast alternative to traditional Bayesian approaches, VI has limited applicability due to boundary issues and local optima problems. To address these challenges, we propose flexible VI methods based on deep generative models that do not require parametric assumptions on the variational distribution. We embed a surjective transformation in our framework to avoid posterior truncation at the boundary. Additionally, we provide theoretical conditions that guarantee the success of the algorithm. Furthermore, our temperature annealing scheme can prevent being trapped in local optima through a series of intermediate posteriors. We apply our method to infectious disease models and a geophysical model, illustrating that the proposed method can provide fast and accurate inference compared to its competitors.
We study text-based image editing (TBIE) of a single image by counterfactual inference because it is an elegant formulation to precisely address the requirement: the edited image should retain the fidelity of the original one. Through the lens of the formulation, we find that the crux of TBIE is that existing techniques hardly achieve a good trade-off between editability and fidelity, mainly due to the overfitting of the single-image fine-tuning. To this end, we propose a Doubly Abductive Counterfactual inference framework (DAC). We first parameterize an exogenous variable as a UNet LoRA, whose abduction can encode all the image details. Second, we abduct another exogenous variable parameterized by a text encoder LoRA, which recovers the lost editability caused by the overfitted first abduction. Thanks to the second abduction, which exclusively encodes the visual transition from post-edit to pre-edit, its inversion -- subtracting the LoRA -- effectively reverts pre-edit back to post-edit, thereby accomplishing the edit. Through extensive experiments, our DAC achieves a good trade-off between editability and fidelity. Thus, we can support a wide spectrum of user editing intents, including addition, removal, manipulation, replacement, style transfer, and facial change, which are extensively validated in both qualitative and quantitative evaluations. Codes are in //github.com/xuesong39/DAC.
Missing data in multiple variables is a common issue. We investigate the applicability of the framework of graphical models for handling missing data to a complex longitudinal pharmacological study of children with HIV treated with an efavirenz-based regimen as part of the CHAPAS-3 trial. Specifically, we examine whether the causal effects of interest, defined through static interventions on multiple continuous variables, can be recovered (estimated consistently) from the available data only. So far, no general algorithms are available to decide on recoverability, and decisions have to be made on a case-by-case basis. We emphasize sensitivity of recoverability to even the smallest changes in the graph structure, and present recoverability results for three plausible missingness directed acyclic graphs (m-DAGs) in the CHAPAS-3 study, informed by clinical knowledge. Furthermore, we propose the concept of "closed missingness mechanisms" and show that under these mechanisms an available case analysis is admissible for consistent estimation for any type of statistical and causal query, even if the underlying missingness mechanism is of missing not at random (MNAR) type. Both simulations and theoretical considerations demonstrate how, in the assumed MNAR setting of our study, a complete or available case analysis can be superior to multiple imputation, and estimation results vary depending on the assumed missingness DAG. Our analyses are possibly the first to show the applicability of missingness DAGs (m-DAGs) to complex longitudinal real-world data, while highlighting the sensitivity with respect to the assumed causal model.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.