亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that sharp thresholds for Boolean functions directly imply average-case circuit lower bounds. More formally we show that any Boolean function exhibiting a sharp enough threshold at \emph{arbitrary} critical density cannot be computed by Boolean circuits of bounded depth and polynomial size. Our general result implies new average-case bounded depth circuit lower bounds in a variety of settings. (a) ($k$-cliques) For $k=\Theta(n)$, we prove that any circuit of depth $d$ deciding the presence of a size $k$ clique in a random graph requires exponential-in-$n^{\Theta(1/d)}$ size. To the best of our knowledge, this is the first average-case exponential size lower bound for bounded depth (not necessarily monotone) circuits solving the fundamental $k$-clique problem (for any $k=k_n$). (b)(random 2-SAT) We prove that any circuit of depth $d$ deciding the satisfiability of a random 2-SAT formula requires exponential-in-$n^{\Theta(1/d)}$ size. To the best of our knowledge, this is the first bounded depth circuit lower bound for random $k$-SAT for any value of $k \geq 2.$ Our results also provide the first rigorous lower bound in agreement with a conjectured, but debated, ``computational hardness'' of random $k$-SAT around its satisfiability threshold. (c)(Statistical estimation -- planted $k$-clique) Over the recent years, multiple statistical estimation problems have also been proven to exhibit a ``statistical'' sharp threshold, called the All-or-Nothing (AoN) phenomenon. We show that AoN also implies circuit lower bounds for statistical problems. As a simple corollary of that, we prove that any circuit of depth $d$ that solves to information-theoretic optimality a ``dense'' variant of the celebrated planted $k$-clique problem requires exponential-in-$n^{\Theta(1/d)}$ size.

相關內容

After discovering that Language Models (LMs) can be good in-context few-shot learners, numerous strategies have been proposed to optimize in-context sequence configurations. Recently, researchers in Vision-Language (VL) domains also develop their few-shot learners, while they only use the simplest way, ie., randomly sampling, to configure in-context image-text pairs. In order to explore the effects of varying configurations on VL in-context learning, we devised four strategies for image selection and four for caption assignment to configure in-context image-text pairs for image captioning. Here Image Captioning is used as the case study since it can be seen as the visually-conditioned LM. Our comprehensive experiments yield two counter-intuitive but valuable insights, highlighting the distinct characteristics of VL in-context learning due to multi-modal synergy, as compared to the NLP case. Furthermore, in our exploration of optimal combination strategies, we observed an average performance enhancement of 20.9 of CIDEr scores compared to the baseline. The code is given in //github.com/yongliang-wu/ExploreCfg.

Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.

Efficient real-time traffic prediction is crucial for reducing transportation time. To predict traffic conditions, we employ a spatio-temporal graph neural network (ST-GNN) to model our real-time traffic data as temporal graphs. Despite its capabilities, it often encounters challenges in delivering efficient real-time predictions for real-world traffic data. Recognizing the significance of timely prediction due to the dynamic nature of real-time data, we employ knowledge distillation (KD) as a solution to enhance the execution time of ST-GNNs for traffic prediction. In this paper, We introduce a cost function designed to train a network with fewer parameters (the student) using distilled data from a complex network (the teacher) while maintaining its accuracy close to that of the teacher. We use knowledge distillation, incorporating spatial-temporal correlations from the teacher network to enable the student to learn the complex patterns perceived by the teacher. However, a challenge arises in determining the student network architecture rather than considering it inadvertently. To address this challenge, we propose an algorithm that utilizes the cost function to calculate pruning scores, addressing small network architecture search issues, and jointly fine-tunes the network resulting from each pruning stage using KD. Ultimately, we evaluate our proposed ideas on two real-world datasets, PeMSD7 and PeMSD8. The results indicate that our method can maintain the student's accuracy close to that of the teacher, even with the retention of only $3\%$ of network parameters.

Generative AI models face the challenge of hallucinations that can undermine users' trust in such systems. We approach the problem of conversational information seeking as a two-step process, where relevant passages in a corpus are identified first and then summarized into a final system response. This way we can automatically assess if the answer to the user's question is present in the corpus. Specifically, our proposed method employs a sentence-level classifier to detect if the answer is present, then aggregates these predictions on the passage level, and eventually across the top-ranked passages to arrive at a final answerability estimate. For training and evaluation, we develop a dataset based on the TREC CAsT benchmark that includes answerability labels on the sentence, passage, and ranking levels. We demonstrate that our proposed method represents a strong baseline and outperforms a state-of-the-art LLM on the answerability prediction task.

While Large Language Models (LLMs) have proven to be exceptional on a variety of tasks after alignment, they may still produce responses that contradict the context or world knowledge confidently, a phenomenon known as ``hallucination''. In this paper, we demonstrate that reducing the inconsistency between the external knowledge encapsulated in the training data and the intrinsic knowledge inherited in the pretraining corpus could mitigate hallucination in alignment. Specifically, we introduce a novel knowledge consistent alignment (KCA) approach, which involves automatically formulating examinations based on external knowledge for accessing the comprehension of LLMs. For data encompassing knowledge inconsistency, KCA implements several simple yet efficient strategies for processing. We illustrate the superior performance of the proposed KCA approach in mitigating hallucinations across six benchmarks using LLMs of different backbones and scales. Furthermore, we confirm the correlation between knowledge inconsistency and hallucination, signifying the effectiveness of reducing knowledge inconsistency in alleviating hallucinations. Our code, model weights, and data are public at \url{//github.com/fanqiwan/KCA}.

Black-box query-based attacks constitute significant threats to Machine Learning as a Service (MLaaS) systems since they can generate adversarial examples without accessing the target model's architecture and parameters. Traditional defense mechanisms, such as adversarial training, gradient masking, and input transformations, either impose substantial computational costs or compromise the test accuracy of non-adversarial inputs. To address these challenges, we propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost. These models leverage the local implicit function and rebuild the natural image manifold. Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-based defense mechanism, demonstrating significant improvements in robustness against query-based attacks.

3D shapes captured by scanning devices are often incomplete due to occlusion. 3D shape completion methods have been explored to tackle this limitation. However, most of these methods are only trained and tested on a subset of categories, resulting in poor generalization to unseen categories. In this paper, we introduce a novel weakly-supervised framework to reconstruct the complete shapes from unseen categories. We first propose an end-to-end prior-assisted shape learning network that leverages data from the seen categories to infer a coarse shape. Specifically, we construct a prior bank consisting of representative shapes from the seen categories. Then, we design a multi-scale pattern correlation module for learning the complete shape of the input by analyzing the correlation between local patterns within the input and the priors at various scales. In addition, we propose a self-supervised shape refinement model to further refine the coarse shape. Considering the shape variability of 3D objects across categories, we construct a category-specific prior bank to facilitate shape refinement. Then, we devise a voxel-based partial matching loss and leverage the partial scans to drive the refinement process. Extensive experimental results show that our approach is superior to state-of-the-art methods by a large margin.

Adversarial attacks on learning-based trajectory predictors have already been demonstrated. However, there are still open questions about the effects of perturbations on trajectory predictor inputs other than state histories, and how these attacks impact downstream planning and control. In this paper, we conduct a sensitivity analysis on two trajectory prediction models, Trajectron++ and AgentFormer. We observe that between all inputs, almost all of the perturbation sensitivities for Trajectron++ lie only within the most recent state history time point, while perturbation sensitivities for AgentFormer are spread across state histories over time. We additionally demonstrate that, despite dominant sensitivity on state history perturbations, an undetectable image map perturbation made with the Fast Gradient Sign Method can induce large prediction error increases in both models. Even though image maps may contribute slightly to the prediction output of both models, this result reveals that rather than being robust to adversarial image perturbations, trajectory predictors are susceptible to image attacks. Using an optimization-based planner and example perturbations crafted from sensitivity results, we show how this vulnerability can cause a vehicle to come to a sudden stop from moderate driving speeds.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

北京阿比特科技有限公司