In this paper, we present Pre-CoFactv3, a comprehensive framework comprised of Question Answering and Text Classification components for fact verification. Leveraging In-Context Learning, Fine-tuned Large Language Models (LLMs), and the FakeNet model, we address the challenges of fact verification. Our experiments explore diverse approaches, comparing different Pre-trained LLMs, introducing FakeNet, and implementing various ensemble methods. Notably, our team, Trifecta, secured first place in the AAAI-24 Factify 3.0 Workshop, surpassing the baseline accuracy by 103% and maintaining a 70% lead over the second competitor. This success underscores the efficacy of our approach and its potential contributions to advancing fact verification research.
This paper introduces a distribution-dependent PAC-Chernoff bound that exhibits perfect tightness for interpolators, even within over-parameterized model classes. This bound, which relies on basic principles of Large Deviation Theory, defines a natural measure of the smoothness of a model, characterized by simple real-valued functions. Building upon this bound and the new concept of smoothness, we present an unified theoretical framework revealing why certain interpolators show an exceptional generalization, while others falter. We theoretically show how a wide spectrum of modern learning methodologies, encompassing techniques such as $\ell_2$-norm, distance-from-initialization and input-gradient regularization, in combination with data augmentation, invariant architectures, and over-parameterization, collectively guide the optimizer toward smoother interpolators, which, according to our theoretical framework, are the ones exhibiting superior generalization performance. This study shows that distribution-dependent bounds serve as a powerful tool to understand the complex dynamics behind the generalization capabilities of over-parameterized interpolators.
In this paper, we present a novel approach to improving software quality and efficiency through a Large Language Model (LLM)-based model designed to review code and identify potential issues. Our proposed LLM-based AI agent model is trained on large code repositories. This training includes code reviews, bug reports, and documentation of best practices. It aims to detect code smells, identify potential bugs, provide suggestions for improvement, and optimize the code. Unlike traditional static code analysis tools, our LLM-based AI agent has the ability to predict future potential risks in the code. This supports a dual goal of improving code quality and enhancing developer education by encouraging a deeper understanding of best practices and efficient coding techniques. Furthermore, we explore the model's effectiveness in suggesting improvements that significantly reduce post-release bugs and enhance code review processes, as evidenced by an analysis of developer sentiment toward LLM feedback. For future work, we aim to assess the accuracy and efficiency of LLM-generated documentation updates in comparison to manual methods. This will involve an empirical study focusing on manually conducted code reviews to identify code smells and bugs, alongside an evaluation of best practice documentation, augmented by insights from developer discussions and code reviews. Our goal is to not only refine the accuracy of our LLM-based tool but also to underscore its potential in streamlining the software development lifecycle through proactive code improvement and education.
In this paper, we investigate a new problem called narrative action evaluation (NAE). NAE aims to generate professional commentary that evaluates the execution of an action. Unlike traditional tasks such as score-based action quality assessment and video captioning involving superficial sentences, NAE focuses on creating detailed narratives in natural language. These narratives provide intricate descriptions of actions along with objective evaluations. NAE is a more challenging task because it requires both narrative flexibility and evaluation rigor. One existing possible solution is to use multi-task learning, where narrative language and evaluative information are predicted separately. However, this approach results in reduced performance for individual tasks because of variations between tasks and differences in modality between language information and evaluation information. To address this, we propose a prompt-guided multimodal interaction framework. This framework utilizes a pair of transformers to facilitate the interaction between different modalities of information. It also uses prompts to transform the score regression task into a video-text matching task, thus enabling task interactivity. To support further research in this field, we re-annotate the MTL-AQA and FineGym datasets with high-quality and comprehensive action narration. Additionally, we establish benchmarks for NAE. Extensive experiment results prove that our method outperforms separate learning methods and naive multi-task learning methods. Data and code are released at //github.com/shiyi-zh0408/NAE_CVPR2024.
Background: Recent advancements in Artificial Intelligence (AI) contributed significantly to suicide assessment, however, our theoretical understanding of this complex behavior is still limited. Objective: This study aimed to harness AI methodologies to uncover hidden risk factors that trigger or aggravate suicide behaviors. Method: The primary dataset included 228,052 Facebook postings by 1,006 users who completed the gold-standard Columbia Suicide Severity Rating Scale. This dataset was analyzed using a bottom-up research pipeline without a-priory hypotheses and its findings were validated using a top-down analysis of a new dataset. This secondary dataset included responses by 1,062 participants to the same suicide scale as well as to well-validated scales measuring depression and boredom. Results: An almost fully automated, AI-guided research pipeline resulted in four Facebook topics that predicted the risk of suicide, of which the strongest predictor was boredom. A comprehensive literature review using APA PsycInfo revealed that boredom is rarely perceived as a unique risk factor of suicide. A complementing top-down path analysis of the secondary dataset uncovered an indirect relationship between boredom and suicide, which was mediated by depression. An equivalent mediated relationship was observed in the primary Facebook dataset as well. However, here, a direct relationship between boredom and suicide risk was also observed. Conclusions: Integrating AI methods allowed the discovery of an under-researched risk factor of suicide. The study signals boredom as a maladaptive 'ingredient' that might trigger suicide behaviors, regardless of depression. Further studies are recommended to direct clinicians' attention to this burdening, and sometimes existential experience.
In this paper, we present Misaka, a visualized swarm testbed for smart grid algorithm evaluation, also an extendable open-source open-hardware platform for developing tabletop tangible swarm interfaces. The platform consists of a collection of custom-designed 3 omni-directional wheels robots each 10 cm in diameter, high accuracy localization through a microdot pattern overlaid on top of the activity sheets, and a software framework for application development and control, while remaining affordable (per unit cost about 30 USD at the prototype stage). We illustrate the potential of tabletop swarm user interfaces through a set of smart grid algorithm application scenarios developed with Misaka.
In this paper we argue that conventional unitary-invariant measures of recommender system (RS) performance based on measuring differences between predicted ratings and actual user ratings fail to assess fundamental RS properties. More specifically, posing the optimization problem as one of predicting exact user ratings provides only an indirect suboptimal approximation for what RS applications typically need, which is an ability to accurately predict user preferences. We argue that scalar measures such as RMSE and MAE with respect to differences between actual and predicted ratings are only proxies for measuring RS ability to accurately estimate user preferences. We propose what we consider to be a measure that is more fundamentally appropriate for assessing RS performance, rank-preference consistency, which simply counts the number of prediction pairs that are inconsistent with the user's expressed product preferences. For example, if an RS predicts the user will prefer product A over product B, but the user's withheld ratings indicate s/he prefers product B over A, then rank-preference consistency has been violated. Our test results conclusively demonstrate that methods tailored to optimize arbitrary measures such as RMSE are not generally effective at accurately predicting user preferences. Thus, we conclude that conventional methods used for assessing RS performance are arbitrary and misleading.
Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods.
This paper explores novel strategies to strengthen the security of Hybrid Wireless Body Area Networks (HyWBANs), essential in smart healthcare and Internet of Things (IoT) applications. Recognizing the vulnerability of HyWBAN to sophisticated cyber-attacks, we propose an innovative combination of semantic communications and jamming receivers. This dual-layered security mechanism protects against unauthorized access and data breaches, particularly in scenarios involving in-body to on-body communication channels. We conduct comprehensive laboratory measurements to understand hybrid (radio and optical) communication propagation through biological tissues and utilize these insights to refine a dataset for training a Deep Learning (DL) model. These models, in turn, generate semantic concepts linked to cryptographic keys for enhanced data confidentiality and integrity using a jamming receiver. The proposed model demonstrates a significant reduction in energy consumption compared to traditional cryptographic methods, like Elliptic Curve Diffie-Hellman (ECDH), especially when supplemented with jamming. Our approach addresses the primary security concerns and sets the baseline for future secure biomedical communication systems advancements.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .