Discretization of continuous-time diffusion processes is a widely recognized method for sampling. However, it seems to be a considerable restriction when the potentials are often required to be smooth (gradient Lipschitz). This paper studies the problem of sampling through Euler discretization, where the potential function is assumed to be a mixture of weakly smooth distributions and satisfies weakly dissipative. We establish the convergence in Kullback-Leibler (KL) divergence with the number of iterations to reach $\epsilon$-neighborhood of a target distribution in only polynomial dependence on the dimension. We relax the degenerated convex at infinity conditions of \citet{erdogdu2020convergence} and prove convergence guarantees under Poincar\'{e} inequality or non-strongly convex outside the ball. In addition, we also provide convergence in $L_{\beta}$-Wasserstein metric for the smoothing potential.
Discrete kernel smoothing is now gaining importance in nonparametric statistics. In this paper, we investigate some asymptotic properties of the normalized discrete associated-kernel estimator of a probability mass function. We show, under some regularity and non-restrictive assumptions on the associated-kernel, that the normalizing random variable converges in mean square to 1. We then derive the consistency and the asymptotic normality of the proposed estimator. Various families of discrete kernels already exhibited satisfy the conditions, including the refined CoM-Poisson which is underdispersed and of second-order. Finally, the first-order binomial kernel is discussed and, surprisingly, its normalized estimator has a suitable asymptotic behaviour through simulations.
We present the construction and application of a first order stabilization-free virtual element method to problems in plane elasticity. Well-posedness and error estimates of the discrete problem are established. The method is assessed on a series of well-known benchmark problems from linear elasticity and numerical results are presented that affirm the optimal convergence rate of the virtual element method in the $L^2$ norm and the energy seminorm.
Bayesian bandit algorithms with approximate inference have been widely used in practice with superior performance. Yet, few studies regarding the fundamental understanding of their performances are available. In this paper, we propose a Bayesian bandit algorithm, which we call Generalized Bayesian Upper Confidence Bound (GBUCB), for bandit problems in the presence of approximate inference. Our theoretical analysis demonstrates that in Bernoulli multi-armed bandit, GBUCB can achieve $O(\sqrt{T}(\log T)^c)$ frequentist regret if the inference error measured by symmetrized Kullback-Leibler divergence is controllable. This analysis relies on a novel sensitivity analysis for quantile shifts with respect to inference errors. To our best knowledge, our work provides the first theoretical regret bound that is better than $o(T)$ in the setting of approximate inference. Our experimental evaluations on multiple approximate inference settings corroborate our theory, showing that our GBUCB is consistently superior to BUCB and Thompson sampling.
The optimistic gradient method has seen increasing popularity as an efficient first-order method for solving convex-concave saddle point problems. To analyze its iteration complexity, a recent work [arXiv:1901.08511] proposed an interesting perspective that interprets the optimistic gradient method as an approximation to the proximal point method. In this paper, we follow this approach and distill the underlying idea of optimism to propose a generalized optimistic method, which encompasses the optimistic gradient method as a special case. Our general framework can handle constrained saddle point problems with composite objective functions and can work with arbitrary norms with compatible Bregman distances. Moreover, we also develop an adaptive line search scheme to select the stepsizes without knowledge of the smoothness coefficients. We instantiate our method with first-order, second-order and higher-order oracles and give sharp global iteration complexity bounds. When the objective function is convex-concave, we show that the averaged iterates of our $p$-th-order method ($p\geq 1$) converge at a rate of $\mathcal{O}(1/N^\frac{p+1}{2})$. When the objective function is further strongly-convex-strongly-concave, we prove a complexity bound of $\mathcal{O}(\frac{L_1}{\mu}\log\frac{1}{\epsilon})$ for our first-order method and a bound of $\mathcal{O}((L_p D^\frac{p-1}{2}/\mu)^{\frac{2}{p+1}}+\log\log\frac{1}{\epsilon})$ for our $p$-th-order method ($p\geq 2$) respectively, where $L_p$ ($p\geq 1$) is the Lipschitz constant of the $p$-th-order derivative, $\mu$ is the strongly-convex parameter, and $D$ is the initial Bregman distance to the saddle point. Moreover, our line search scheme provably only requires an almost constant number of calls to a subproblem solver per iteration on average, making our first-order and second-order methods particularly amenable to implementation.
This paper is devoted to the numerical analysis of a piecewise constant discontinuous Galerkin method for time fractional subdiffusion problems. The regularity of weak solution is firstly established by using variational approach and Mittag-Leffler function. Then several optimal error estimates are derived with low regularity data. Finally, numerical experiments are conducted to verify the theoretical results.
This paper presents local minimax regret lower bounds for adaptively controlling linear-quadratic-Gaussian (LQG) systems. We consider smoothly parametrized instances and provide an understanding of when logarithmic regret is impossible which is both instance specific and flexible enough to take problem structure into account. This understanding relies on two key notions: That of local-uninformativeness; when the optimal policy does not provide sufficient excitation for identification of the optimal policy, and yields a degenerate Fisher information matrix; and that of information-regret-boundedness, when the small eigenvalues of a policy-dependent information matrix are boundable in terms of the regret of that policy. Combined with a reduction to Bayesian estimation and application of Van Trees' inequality, these two conditions are sufficient for proving regret bounds on order of magnitude $\sqrt{T}$ in the time horizon, $T$. This method yields lower bounds that exhibit tight dimensional dependencies and scale naturally with control-theoretic problem constants. For instance, we are able to prove that systems operating near marginal stability are fundamentally hard to learn to control. We further show that large classes of systems satisfy these conditions, among them any state-feedback system with both $A$- and $B$-matrices unknown. Most importantly, we also establish that a nontrivial class of partially observable systems, essentially those that are over-actuated, satisfy these conditions, thus providing a $\sqrt{T}$ lower bound also valid for partially observable systems. Finally, we turn to two simple examples which demonstrate that our lower bound captures classical control-theoretic intuition: our lower bounds diverge for systems operating near marginal stability or with large filter gain -- these can be arbitrarily hard to (learn to) control.
A nonlinear partial differential equation (PDE) that models the possible shapes that a periodic Miura tessellation can take in the homogenization limit has been established recently and solved only in specific cases. In this paper, the existence and uniqueness of a solution to the PDE is proved for general Dirichlet boundary conditions. Then a H^2-conforming discretization is introduced to approximate the solution of the PDE and a fixed point algorithm is proposed to solve the associated discrete problem. A convergence proof for the method is given as well as a convergence rate. Finally, numerical experiments show the robustness of the method and that non trivial shapes can be achieved using periodic Miura tessellations.
What is the "right" topological invariant of a large point cloud X? Prior research has focused on estimating the full persistence diagram of X, a quantity that is very expensive to compute, unstable to outliers, and far from a sufficient statistic. We therefore propose that the correct invariant is not the persistence diagram of X, but rather the collection of persistence diagrams of many small subsets. This invariant, which we call "distributed persistence," is perfectly parallelizable, more stable to outliers, and has a rich inverse theory. The map from the space of point clouds (with the quasi-isometry metric) to the space of distributed persistence invariants (with the Hausdorff-Bottleneck distance) is a global quasi-isometry. This is a much stronger property than simply being injective, as it implies that the inverse of a small neighborhood is a small neighborhood, and is to our knowledge the only result of its kind in the TDA literature. Moreover, the quasi-isometry bounds depend on the size of the subsets taken, so that as the size of these subsets goes from small to large, the invariant interpolates between a purely geometric one and a topological one. Lastly, we note that our inverse results do not actually require considering all subsets of a fixed size (an enormous collection), but a relatively small collection satisfying certain covering properties that arise with high probability when randomly sampling subsets. These theoretical results are complemented by two synthetic experiments demonstrating the use of distributed persistence in practice.
Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.