亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In causal inference about two treatments, Conditional Average Treatment Effects (CATEs) play an important role as a quantity representing an individualized causal effect, defined as a difference between the expected outcomes of the two treatments conditioned on covariates. This study assumes two linear regression models between a potential outcome and covariates of the two treatments and defines CATEs as a difference between the linear regression models. Then, we propose a method for consistently estimating CATEs even under high-dimensional and non-sparse parameters. In our study, we demonstrate that desirable theoretical properties, such as consistency, remain attainable even without assuming sparsity explicitly if we assume a weaker assumption called implicit sparsity originating from the definition of CATEs. In this assumption, we suppose that parameters of linear models in potential outcomes can be divided into treatment-specific and common parameters, where the treatment-specific parameters take difference values between each linear regression model, while the common parameters remain identical. Thus, in a difference between two linear regression models, the common parameters disappear, leaving only differences in the treatment-specific parameters. Consequently, the non-zero parameters in CATEs correspond to the differences in the treatment-specific parameters. Leveraging this assumption, we develop a Lasso regression method specialized for CATE estimation and present that the estimator is consistent. Finally, we confirm the soundness of the proposed method by simulation studies.

相關內容

Recently, the evaluation of Large Language Models has emerged as a popular area of research. The three crucial questions for LLM evaluation are ``what, where, and how to evaluate''. However, the existing research mainly focuses on the first two questions, which are basically what tasks to give the LLM during testing and what kind of knowledge it should deal with. As for the third question, which is about what standards to use, the types of evaluators, how to score, and how to rank, there hasn't been much discussion. In this paper, we analyze evaluation methods by comparing various criteria with both manual and automatic evaluation, utilizing onsite, crowd-sourcing, public annotators and GPT-4, with different scoring methods and ranking systems. We propose a new dataset, LLMEval and conduct evaluations on 20 LLMs. A total of 2,186 individuals participated, leading to the generation of 243,337 manual annotations and 57,511 automatic evaluation results. We perform comparisons and analyses of different settings and conduct 10 conclusions that can provide some insights for evaluating LLM in the future. The dataset and the results are publicly available at //github.com/llmeval .

As optimization challenges continue to evolve, so too must our tools and understanding. To effectively assess, validate, and compare optimization algorithms, it is crucial to use a benchmark test suite that encompasses a diverse range of problem instances with various characteristics. Traditional benchmark suites often consist of numerous fixed test functions, making it challenging to align these with specific research objectives, such as the systematic evaluation of algorithms under controllable conditions. This paper introduces the Generalized Numerical Benchmark Generator (GNBG) for single-objective, box-constrained, continuous numerical optimization. Unlike existing approaches that rely on multiple baseline functions and transformations, GNBG utilizes a single, parametric, and configurable baseline function. This design allows for control over various problem characteristics. Researchers using GNBG can generate instances that cover a broad array of morphological features, from unimodal to highly multimodal functions, various local optima patterns, and symmetric to highly asymmetric structures. The generated problems can also vary in separability, variable interaction structures, dimensionality, conditioning, and basin shapes. These customizable features enable the systematic evaluation and comparison of optimization algorithms, allowing researchers to probe their strengths and weaknesses under diverse and controllable conditions.

The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: //github.com/fanny-jourdan/TaCo

Planning safe trajectories in Autonomous Driving Systems (ADS) is a complex problem to solve in real-time. The main challenge to solve this problem arises from the various conditions and constraints imposed by road geometry, semantics and traffic rules, as well as the presence of dynamic agents. Recently, Model Predictive Path Integral (MPPI) has shown to be an effective framework for optimal motion planning and control in robot navigation in unstructured and highly uncertain environments. In this paper, we formulate the motion planning problem in ADS as a nonlinear stochastic dynamic optimization problem that can be solved using an MPPI strategy. The main technical contribution of this work is a method to handle obstacles within the MPPI formulation safely. In this method, obstacles are approximated by circles that can be easily integrated into the MPPI cost formulation while considering safety margins. The proposed MPPI framework has been efficiently implemented in our autonomous vehicle and experimentally validated using three different primitive scenarios. Experimental results show that generated trajectories are safe, feasible and perfectly achieve the planning objective. The video results as well as the open-source implementation are available at: //gitlab.uni.lu/360lab-public/mppi

The Spiking Neural Network (SNN), as one of the biologically inspired neural network infrastructures, has drawn increasing attention recently. It adopts binary spike activations to transmit information, thus the multiplications of activations and weights can be substituted by additions, which brings high energy efficiency. However, in the paper, we theoretically and experimentally prove that the binary spike activation map cannot carry enough information, thus causing information loss and resulting in accuracy decreasing. To handle the problem, we propose a ternary spike neuron to transmit information. The ternary spike neuron can also enjoy the event-driven and multiplication-free operation advantages of the binary spike neuron but will boost the information capacity. Furthermore, we also embed a trainable factor in the ternary spike neuron to learn the suitable spike amplitude, thus our SNN will adopt different spike amplitudes along layers, which can better suit the phenomenon that the membrane potential distributions are different along layers. To retain the efficiency of the vanilla ternary spike, the trainable ternary spike SNN will be converted to a standard one again via a re-parameterization technique in the inference. Extensive experiments with several popular network structures over static and dynamic datasets show that the ternary spike can consistently outperform state-of-the-art methods. Our code is open-sourced at //github.com/yfguo91/Ternary-Spike.

Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.

Multimodal Large Language Models (MLLMs), building upon the powerful Large Language Models (LLMs) with exceptional reasoning and generalization capability, have opened up new avenues for embodied task planning. MLLMs excel in their ability to integrate diverse environmental inputs, such as real-time task progress, visual observations, and open-form language instructions, which are crucial for executable task planning. In this work, we introduce a benchmark with human annotations, EgoPlan-Bench, to quantitatively investigate the potential of MLLMs as embodied task planners in real-world scenarios. Our benchmark is distinguished by realistic tasks derived from real-world videos, a diverse set of actions involving interactions with hundreds of different objects, and complex visual observations from varied environments. We evaluate various open-source MLLMs, revealing that these models have not yet evolved into embodied planning generalists (even GPT-4V). We further construct an instruction-tuning dataset EgoPlan-IT from videos of human-object interactions, to facilitate the learning of high-level task planning in intricate real-world situations. The experiment results demonstrate that the model tuned on EgoPlan-IT not only significantly improves performance on our benchmark, but also effectively acts as embodied planner in simulations.

Federated Learning (FL), a distributed machine learning technique has recently experienced tremendous growth in popularity due to its emphasis on user data privacy. However, the distributed computations of FL can result in constrained communication and drawn-out learning processes, necessitating the client-server communication cost optimization. The ratio of chosen clients and the quantity of local training passes are two hyperparameters that have a significant impact on FL performance. Due to different training preferences across various applications, it can be difficult for FL practitioners to manually select such hyperparameters. In our research paper, we introduce FedAVO, a novel FL algorithm that enhances communication effectiveness by selecting the best hyperparameters leveraging the African Vulture Optimizer (AVO). Our research demonstrates that the communication costs associated with FL operations can be substantially reduced by adopting AVO for FL hyperparameter adjustment. Through extensive evaluations of FedAVO on benchmark datasets, we show that FedAVO achieves significant improvement in terms of model accuracy and communication round, particularly with realistic cases of Non-IID datasets. Our extensive evaluation of the FedAVO algorithm identifies the optimal hyperparameters that are appropriately fitted for the benchmark datasets, eventually increasing global model accuracy by 6% in comparison to the state-of-the-art FL algorithms (such as FedAvg, FedProx, FedPSO, etc.).

With the recent spike in the number and availability of Large Language Models (LLMs), it has become increasingly important to provide large and realistic benchmarks for evaluating Knowledge Graph Question Answering (KGQA) systems. So far the majority of benchmarks rely on pattern-based SPARQL query generation approaches. The subsequent natural language (NL) question generation is conducted through crowdsourcing or other automated methods, such as rule-based paraphrasing or NL question templates. Although some of these datasets are of considerable size, their pitfall lies in their pattern-based generation approaches, which do not always generalize well to the vague and linguistically diverse questions asked by humans in real-world contexts. In this paper, we introduce Spider4SPARQL - a new SPARQL benchmark dataset featuring 9,693 previously existing manually generated NL questions and 4,721 unique, novel, and complex SPARQL queries of varying complexity. In addition to the NL/SPARQL pairs, we also provide their corresponding 166 knowledge graphs and ontologies, which cover 138 different domains. Our complex benchmark enables novel ways of evaluating the strengths and weaknesses of modern KGQA systems. We evaluate the system with state-of-the-art KGQA systems as well as LLMs, which achieve only up to 45\% execution accuracy, demonstrating that Spider4SPARQL is a challenging benchmark for future research.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司