Electronic health records include information on patients' status and medical history, which could cover the history of diseases and disorders that could be hereditary. One important use of family history information is in precision health, where the goal is to keep the population healthy with preventative measures. Natural Language Processing (NLP) and machine learning techniques can assist with identifying information that could assist health professionals in identifying health risks before a condition is developed in their later years, saving lives and reducing healthcare costs. We survey the literature on the techniques from the NLP field that have been developed to utilise digital health records to identify risks of familial diseases. We highlight that rule-based methods are heavily investigated and are still actively used for family history extraction. Still, more recent efforts have been put into building neural models based on large-scale pre-trained language models. In addition to the areas where NLP has successfully been utilised, we also identify the areas where more research is needed to unlock the value of patients' records regarding data collection, task formulation and downstream applications.
Understanding the severity of conditions shown in images in medical diagnosis is crucial, serving as a key guide for clinical assessment, treatment, as well as evaluating longitudinal progression. This paper proposes Con- PrO: a novel representation learning method for severity assessment in medical images using Contrastive learningintegrated Preference Optimization. Different from conventional contrastive learning methods that maximize the distance between classes, ConPrO injects into the latent vector the distance preference knowledge between various severity classes and the normal class. We systematically examine the key components of our framework to illuminate how contrastive prediction tasks acquire valuable representations. We show that our representation learning framework offers valuable severity ordering in the feature space while outperforming previous state-of-the-art methods on classification tasks. We achieve a 6% and 20% relative improvement compared to a supervised and a self-supervised baseline, respectively. In addition, we derived discussions on severity indicators and related applications of preference comparison in the medical domain.
Mental health conditions, prevalent across various demographics, necessitate efficient monitoring to mitigate their adverse impacts on life quality. The surge in data-driven methodologies for mental health monitoring has underscored the importance of privacy-preserving techniques in handling sensitive health data. Despite strides in federated learning for mental health monitoring, existing approaches struggle with vulnerabilities to certain cyber-attacks and data insufficiency in real-world applications. In this paper, we introduce a differential private federated transfer learning framework for mental health monitoring to enhance data privacy and enrich data sufficiency. To accomplish this, we integrate federated learning with two pivotal elements: (1) differential privacy, achieved by introducing noise into the updates, and (2) transfer learning, employing a pre-trained universal model to adeptly address issues of data imbalance and insufficiency. We evaluate the framework by a case study on stress detection, employing a dataset of physiological and contextual data from a longitudinal study. Our finding show that the proposed approach can attain a 10% boost in accuracy and a 21% enhancement in recall, while ensuring privacy protection.
Neighborhood characteristics have been broadly studied with different firm behaviors, e.g. birth, entry, expansion, and survival, except for firm exit. Using a novel dataset of foreign-invested enterprises operating in Shenzhen's electronics manufacturing industry from 2017 to 2021, I investigate the spillover effects of firm exits on other firms in the vicinity, from both the industry group and the industry class level. Significant neighborhood effects are identified for the industry group level, but not the industry class level.
To guide the design of better iterative optimisation heuristics, it is imperative to understand how inherent structural biases within algorithm components affect the performance on a wide variety of search landscapes. This study explores the impact of structural bias in the modular Covariance Matrix Adaptation Evolution Strategy (modCMA), focusing on the roles of various modulars within the algorithm. Through an extensive investigation involving 435,456 configurations of modCMA, we identified key modules that significantly influence structural bias of various classes. Our analysis utilized the Deep-BIAS toolbox for structural bias detection and classification, complemented by SHAP analysis for quantifying module contributions. The performance of these configurations was tested on a sequence of affine-recombined functions, maintaining fixed optimum locations while gradually varying the landscape features. Our results demonstrate an interplay between module-induced structural bias and algorithm performance across different landscape characteristics.
A century ago, Neyman showed how to evaluate the efficacy of treatment using a randomized experiment under a minimal set of assumptions. This classical repeated sampling framework serves as a basis of routine experimental analyses conducted by today's scientists across disciplines. In this paper, we demonstrate that Neyman's methodology can also be used to experimentally evaluate the efficacy of individualized treatment rules (ITRs), which are derived by modern causal machine learning algorithms. In particular, we show how to account for additional uncertainty resulting from a training process based on cross-fitting. The primary advantage of Neyman's approach is that it can be applied to any ITR regardless of the properties of machine learning algorithms that are used to derive the ITR. We also show, somewhat surprisingly, that for certain metrics, it is more efficient to conduct this ex-post experimental evaluation of an ITR than to conduct an ex-ante experimental evaluation that randomly assigns some units to the ITR. Our analysis demonstrates that Neyman's repeated sampling framework is as relevant for causal inference today as it has been since its inception.
The integration of Large Language Models (LLMs) into healthcare promises to transform medical diagnostics, research, and patient care. Yet, the progression of medical LLMs faces obstacles such as complex training requirements, rigorous evaluation demands, and the dominance of proprietary models that restrict academic exploration. Transparent, comprehensive access to LLM resources is essential for advancing the field, fostering reproducibility, and encouraging innovation in healthcare AI. We present Hippocrates, an open-source LLM framework specifically developed for the medical domain. In stark contrast to previous efforts, it offers unrestricted access to its training datasets, codebase, checkpoints, and evaluation protocols. This open approach is designed to stimulate collaborative research, allowing the community to build upon, refine, and rigorously evaluate medical LLMs within a transparent ecosystem. Also, we introduce Hippo, a family of 7B models tailored for the medical domain, fine-tuned from Mistral and LLaMA2 through continual pre-training, instruction tuning, and reinforcement learning from human and AI feedback. Our models outperform existing open medical LLMs models by a large-margin, even surpassing models with 70B parameters. Through Hippocrates, we aspire to unlock the full potential of LLMs not just to advance medical knowledge and patient care but also to democratize the benefits of AI research in healthcare, making them available across the globe.
Addressing missing data in complex datasets including electronic health records (EHR) is critical for ensuring accurate analysis and decision-making in healthcare. This paper proposes dynamically adaptable structural equation modeling (SEM) using a self-attention method (SESA), an approach to data imputation in EHR. SESA innovates beyond traditional SEM-based methods by incorporating self-attention mechanisms, thereby enhancing model adaptability and accuracy across diverse EHR datasets. Such enhancement allows SESA to dynamically adjust and optimize imputation and overcome the limitations of static SEM frameworks. Our experimental analyses demonstrate the achievement of robust predictive SESA performance for effectively handling missing data in EHR. Moreover, the SESA architecture not only rectifies potential mis-specifications in SEM but also synergizes with causal discovery algorithms to refine its imputation logic based on underlying data structures. Such features highlight its capabilities and broadening applicational potential in EHR data analysis and beyond, marking a reasonable leap forward in the field of data imputation.
The recent prevalence of publicly accessible, large medical imaging datasets has led to a proliferation of artificial intelligence (AI) models for cardiovascular image classification and analysis. At the same time, the potentially significant impacts of these models have motivated the development of a range of explainable AI (XAI) methods that aim to explain model predictions given certain image inputs. However, many of these methods are not developed or evaluated with domain experts, and explanations are not contextualized in terms of medical expertise or domain knowledge. In this paper, we propose a novel framework and python library, MiMICRI, that provides domain-centered counterfactual explanations of cardiovascular image classification models. MiMICRI helps users interactively select and replace segments of medical images that correspond to morphological structures. From the counterfactuals generated, users can then assess the influence of each segment on model predictions, and validate the model against known medical facts. We evaluate this library with two medical experts. Our evaluation demonstrates that a domain-centered XAI approach can enhance the interpretability of model explanations, and help experts reason about models in terms of relevant domain knowledge. However, concerns were also surfaced about the clinical plausibility of the counterfactuals generated. We conclude with a discussion on the generalizability and trustworthiness of the MiMICRI framework, as well as the implications of our findings on the development of domain-centered XAI methods for model interpretability in healthcare contexts.
Hypertension is a global health concern with an increasing prevalence, underscoring the need for effective monitoring and analysis of blood pressure (BP) dynamics. We analyzed a substantial BP dataset comprising 75,636,128 records from 2,054,462 unique patients collected between 2000 and 2022 at Emory Healthcare in Georgia, USA, representing a demographically diverse population. We examined and compared population-wide statistics of bivariate changes in systolic BP (SBP) and diastolic BP (DBP) across sex, age, and race/ethnicity. The analysis revealed that males have higher BP levels than females and exhibit a distinct BP profile with age. Notably, average SBP consistently rises with age, whereas average DBP peaks in the forties age group. Among the ethnic groups studied, Blacks have marginally higher BPs and a greater standard deviation. We also discovered a significant correlation between SBP and DBP at the population level, a phenomenon not previously researched. These results emphasize the importance of demography-specific BP analysis for clinical diagnosis and provide valuable insights for developing personalized, demography-specific healthcare interventions.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.