亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Virtual and augmented reality are currently enjoying a great deal of attention from the research community and the industry towards their adoption within industrial spaces and processes. However, the current design and implementation landscape is still very fluid, while the community as a whole has not yet consolidated into concrete design directions, other than basic patterns. Other open issues include the choice over a cloud or edge-based architecture when designing such systems. Within this work, we present our approach for a monitoring intervention inside a factory space utilizing both VR and AR, based primarily on edge computing, while also utilizing the cloud. We discuss its main design directions, as well as a basic ontology to aid in simple description of factory assets. In order to highlight the design aspects of our approach, we present a prototype implementation, based on a use case scenario in a factory site, within the context of the ENERMAN H2020 project.

相關內容

It has been a hot research topic to enable machines to understand human emotions in multimodal contexts under dialogue scenarios, which is tasked with multimodal emotion analysis in conversation (MM-ERC). MM-ERC has received consistent attention in recent years, where a diverse range of methods has been proposed for securing better task performance. Most existing works treat MM-ERC as a standard multimodal classification problem and perform multimodal feature disentanglement and fusion for maximizing feature utility. Yet after revisiting the characteristic of MM-ERC, we argue that both the feature multimodality and conversational contextualization should be properly modeled simultaneously during the feature disentanglement and fusion steps. In this work, we target further pushing the task performance by taking full consideration of the above insights. On the one hand, during feature disentanglement, based on the contrastive learning technique, we devise a Dual-level Disentanglement Mechanism (DDM) to decouple the features into both the modality space and utterance space. On the other hand, during the feature fusion stage, we propose a Contribution-aware Fusion Mechanism (CFM) and a Context Refusion Mechanism (CRM) for multimodal and context integration, respectively. They together schedule the proper integrations of multimodal and context features. Specifically, CFM explicitly manages the multimodal feature contributions dynamically, while CRM flexibly coordinates the introduction of dialogue contexts. On two public MM-ERC datasets, our system achieves new state-of-the-art performance consistently. Further analyses demonstrate that all our proposed mechanisms greatly facilitate the MM-ERC task by making full use of the multimodal and context features adaptively. Note that our proposed methods have the great potential to facilitate a broader range of other conversational multimodal tasks.

Over the past decade, a long line of research has investigated the distributed complexity landscape of locally checkable labeling (LCL) problems on bounded-degree graphs, culminating in an almost-complete classification on general graphs and a complete classification on trees. The latter states that, on bounded-degree trees, any LCL problem has deterministic \emph{worst-case} time complexity $O(1)$, $\Theta(\log^* n)$, $\Theta(\log n)$, or $\Theta(n^{1/k})$ for some positive integer $k$, and all of those complexity classes are nonempty. Moreover, randomness helps only for (some) problems with deterministic worst-case complexity $\Theta(\log n)$, and if randomness helps (asymptotically), then it helps exponentially. In this work, we study how many distributed rounds are needed \emph{on average per node} in order to solve an LCL problem on trees. We obtain a partial classification of the deterministic \emph{node-averaged} complexity landscape for LCL problems. As our main result, we show that every problem with worst-case round complexity $O(\log n)$ has deterministic node-averaged complexity $O(\log^* n)$. We further establish bounds on the node-averaged complexity of problems with worst-case complexity $\Theta(n^{1/k})$: we show that all these problems have node-averaged complexity $\widetilde{\Omega}(n^{1 / (2^k - 1)})$, and that this lower bound is tight for some problems.

The analysis of public affairs documents is crucial for citizens as it promotes transparency, accountability, and informed decision-making. It allows citizens to understand government policies, participate in public discourse, and hold representatives accountable. This is crucial, and sometimes a matter of life or death, for companies whose operation depend on certain regulations. Large Language Models (LLMs) have the potential to greatly enhance the analysis of public affairs documents by effectively processing and understanding the complex language used in such documents. In this work, we analyze the performance of LLMs in classifying public affairs documents. As a natural multi-label task, the classification of these documents presents important challenges. In this work, we use a regex-powered tool to collect a database of public affairs documents with more than 33K samples and 22.5M tokens. Our experiments assess the performance of 4 different Spanish LLMs to classify up to 30 different topics in the data in different configurations. The results shows that LLMs can be of great use to process domain-specific documents, such as those in the domain of public affairs.

An experimental comparison of two or more optimization algorithms requires the same computational resources to be assigned to each algorithm. When a maximum runtime is set as the stopping criterion, all algorithms need to be executed in the same machine if they are to use the same resources. Unfortunately, the implementation code of the algorithms is not always available, which means that running the algorithms to be compared in the same machine is not always possible. And even if they are available, some optimization algorithms might be costly to run, such as training large neural-networks in the cloud. In this paper, we consider the following problem: how do we compare the performance of a new optimization algorithm B with a known algorithm A in the literature if we only have the results (the objective values) and the runtime in each instance of algorithm A? Particularly, we present a methodology that enables a statistical analysis of the performance of algorithms executed in different machines. The proposed methodology has two parts. First, we propose a model that, given the runtime of an algorithm in a machine, estimates the runtime of the same algorithm in another machine. This model can be adjusted so that the probability of estimating a runtime longer than what it should be is arbitrarily low. Second, we introduce an adaptation of the one-sided sign test that uses a modified p-value and takes into account that probability. Such adaptation avoids increasing the probability of type I error associated with executing algorithms A and B in different machines.

Before and after study frameworks are widely adopted to evaluate the effectiveness of transportation policies and emerging technologies. However, many factors such as seasonal factors, holidays, and lane closure might interfere with the evaluation process by inducing variation in traffic volume during the before and after periods. In practice, limited effort has been made to eliminate the effects of these factors. In this study, an extreme gradient boosting (XGBoost)-based propensity score matching method is proposed to reduce the biases caused by traffic volume variation during the before and after periods. In order to evaluate the effectiveness of the proposed method, a corridor in the City of Chandler, Arizona where an advanced traffic signal control system has been recently implemented was selected. The results indicated that the proposed method is able to effectively eliminate the variation in traffic volume caused by the COVID-19 global Pandemic during the evaluation process. In addition, the results of the t-test and Kolmogorov-Smirnov (KS) test demonstrated that the proposed method outperforms other conventional propensity score matching methods. The application of the proposed method is also transferrable to other before and after evaluation studies and can significantly assist the transportation engineers to eliminate the impacts of traffic volume variation on the evaluation process.

The curse-of-dimensionality (CoD) taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs as Richard Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. In this paper, we develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and samples randomly a subset of these dimensional pieces in each iteration of training PINNs. We theoretically prove the convergence guarantee and other desired properties of the proposed method. We experimentally demonstrate that the proposed method allows us to solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. For instance, we solve nontrivial nonlinear PDEs (one HJB equation and one Black-Scholes equation) in 100,000 dimensions in 6 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, SDGD can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.

We consider the problem of estimating the false-/ true-positive-rate (FPR/TPR) for a binary classification model when there are incorrect labels (label noise) in the validation set. Our motivating application is fraud prevention where accurate estimates of FPR are critical to preserving the experience for good customers, and where label noise is highly asymmetric. Existing methods seek to minimize the total error in the cleaning process - to avoid cleaning examples that are not noise, and to ensure cleaning of examples that are. This is an important measure of accuracy but insufficient to guarantee good estimates of the true FPR or TPR for a model, and we show that using the model to directly clean its own validation data leads to underestimates even if total error is low. This indicates a need for researchers to pursue methods that not only reduce total error but also seek to de-correlate cleaning error with model scores.

Progress in artificial intelligence and machine learning over the past decade has been driven by the ability to train larger deep neural networks (DNNs), leading to a compute demand that far exceeds the growth in hardware performance afforded by Moore's law. Training DNNs is an extremely memory-intensive process, requiring not just the model weights but also activations and gradients for an entire minibatch to be stored. The need to provide high-density and low-leakage on-chip memory motivates the exploration of emerging non-volatile memory for training accelerators. Spin-Transfer-Torque MRAM (STT-MRAM) offers several desirable properties for training accelerators, including 3-4x higher density than SRAM, significantly reduced leakage power, high endurance and reasonable access time. On the one hand, MRAM write operations require high write energy and latency due to the need to ensure reliable switching. In this study, we perform a comprehensive device-to-system evaluation and co-optimization of STT-MRAM for efficient ML training accelerator design. We devised a cross-layer simulation framework to evaluate the effectiveness of STT-MRAM as a scratchpad replacing SRAM in a systolic-array-based DNN accelerator. To address the inefficiency of writes in STT-MRAM, we propose to reduce write voltage and duration. To evaluate the ensuing accuracy-efficiency trade-off, we conduct a thorough analysis of the error tolerance of input activations, weights, and errors during the training. We propose heterogeneous memory configurations that enable training convergence with good accuracy. We show that MRAM provide up to 15-22x improvement in system level energy across a suite of DNN benchmarks under iso-capacity and iso-area scenarios. Further optimizing STT-MRAM write operations can provide over 2x improvement in write energy for minimal degradation in application-level training accuracy.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司