亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we introduce OmniDrones, an efficient and flexible platform tailored for reinforcement learning in drone control, built on Nvidia's Omniverse Isaac Sim. It employs a bottom-up design approach that allows users to easily design and experiment with various application scenarios on top of GPU-parallelized simulations. It also offers a range of benchmark tasks, presenting challenges ranging from single-drone hovering to over-actuated system tracking. In summary, we propose an open-sourced drone simulation platform, equipped with an extensive suite of tools for drone learning. It includes 4 drone models, 5 sensor modalities, 4 control modes, over 10 benchmark tasks, and a selection of widely used RL baselines. To showcase the capabilities of OmniDrones and to support future research, we also provide preliminary results on these benchmark tasks. We hope this platform will encourage further studies on applying RL to practical drone systems.

相關內容

In this study, we design and develop HaptStarter -- a haptic stimulus start system -- to improve the starting performance of the deaf and hard of hearing (DHH) sprinters. A DHH person has a physical ability nearly equivalent to hearing; however, the difficulties in perceiving audio information lead to differences in their performance in sports. Furthermore, the visual reaction time is slower than the auditory reaction time (ART), while the haptic reaction time is equivalent to it. However, a light stimulus start system is increasingly being used in sprint races to aid DHH sprinters. In this study, we design a brand-new haptic stimulus start system for DHH sprinters; we also determine and leverage an optimum haptic stimulus interface. The proposed method has the potential to contribute toward the development of prototypes based on the universal design principle for everyone (DHH, blind and low-vision, and other disabled sprinters with wheelchairs or artificial arms or legs, etc.) by focusing on the overlapping area of sports and disability with human-computer interaction.

In this study, we delve into the dynamic landscape of machine learning research evolution. Initially, through the utilization of Latent Dirichlet Allocation, we discern pivotal themes and fundamental concepts that have emerged within the realm of machine learning. Subsequently, we undertake a comprehensive analysis to track the evolutionary trajectories of these identified themes. To quantify the novelty and divergence of research contributions, we employ the Kullback-Leibler Divergence metric. This statistical measure serves as a proxy for ``surprise'', indicating the extent of differentiation between the content of academic papers and the subsequent developments in research. By amalgamating these insights, we gain the ability to ascertain the pivotal roles played by prominent researchers and the significance of specific academic venues (periodicals and conferences) within the machine learning domain.

Contrastive representation learning is crucial in medical time series analysis as it alleviates dependency on labor-intensive, domain-specific, and scarce expert annotations. However, existing contrastive learning methods primarily focus on one single data level, which fails to fully exploit the intricate nature of medical time series. To address this issue, we present COMET, an innovative hierarchical framework that leverages data consistencies at all inherent levels in medical time series. Our meticulously designed model systematically captures data consistency from four potential levels: observation, sample, trial, and patient levels. By developing contrastive loss at multiple levels, we can learn effective representations that preserve comprehensive data consistency, maximizing information utilization in a self-supervised manner. We conduct experiments in the challenging patient-independent setting. We compare COMET against six baselines using three diverse datasets, which include ECG signals for myocardial infarction and EEG signals for Alzheimer's and Parkinson's diseases. The results demonstrate that COMET consistently outperforms all baselines, particularly in setup with 10% and 1% labeled data fractions across all datasets. These results underscore the significant impact of our framework in advancing contrastive representation learning techniques for medical time series. The source code is available at //github.com/DL4mHealth/COMET.

Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose "SQLPrompt", tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution-based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs ("MixPrompt") and foundation models ("MixLLMs"). We show that \emph{SQLPrompt} outperforms previous approaches for in-context learning with few labeled data by a large margin, closing the gap with finetuning state-of-the-art with thousands of labeled data.

Quantitative evaluation metrics have traditionally been pivotal in gauging the advancements of artificial intelligence systems, including large language models (LLMs). However, these metrics have inherent limitations. Given the intricate nature of real-world tasks, a single scalar to quantify and compare is insufficient to capture the fine-grained nuances of model behavior. Metrics serve only as a way to compare and benchmark models, and do not yield actionable diagnostics, thus making the model improvement process challenging. Model developers find themselves amid extensive manual efforts involving sifting through vast datasets and attempting hit-or-miss adjustments to training data or setups. In this work, we address the shortcomings of quantitative metrics by proposing QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement. QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights that when applied, accelerate model improvement. The insights are backed by a comprehensive dashboard with fine-grained visualizations and human-interpretable analyses. We corroborate the faithfulness of QualEval by demonstrating that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative on a challenging dialogue task (DialogSum) when compared to baselines. QualEval successfully increases the pace of model development, thus in essence serving as a data-scientist-in-a-box. Given the focus on critiquing and improving current evaluation metrics, our method serves as a refreshingly new technique for both model evaluation and improvement.

To facilitate the advancement of research in healthcare robots without human intervention or commands, we introduce the Autonomous Helping Challenge, along with a crowd-sourcing large-scale dataset. The goal is to create healthcare robots that possess the ability to determine when assistance is necessary, generate useful sub-tasks to aid in planning, carry out these plans through a physical robot, and receive feedback from the environment in order to generate new tasks and continue the process. Besides the general challenge in open-ended scenarios, Autonomous Helping focuses on three specific challenges: autonomous task generation, the gap between the current scene and static commonsense, and the gap between language instruction and the real world. Additionally, we propose Helpy, a potential approach to close the healthcare loop in the learning-free setting.

In many applications, e.g. in healthcare and e-commerce, the goal of a contextual bandit may be to learn an optimal treatment assignment policy at the end of the experiment. That is, to minimize simple regret. However, this objective remains understudied. We propose a new family of computationally efficient bandit algorithms for the stochastic contextual bandit setting, where a tuning parameter determines the weight placed on cumulative regret minimization (where we establish near-optimal minimax guarantees) versus simple regret minimization (where we establish state-of-the-art guarantees). Our algorithms work with any function class, are robust to model misspecification, and can be used in continuous arm settings. This flexibility comes from constructing and relying on "conformal arm sets" (CASs). CASs provide a set of arms for every context, encompassing the context-specific optimal arm with a certain probability across the context distribution. Our positive results on simple and cumulative regret guarantees are contrasted with a negative result, which shows that no algorithm can achieve instance-dependent simple regret guarantees while simultaneously achieving minimax optimal cumulative regret guarantees.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司