亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce new approaches for forecasting IBNR (Incurred But Not Reported) frequencies by leveraging individual claims data, which includes accident date, reporting delay, and possibly additional features for every reported claim. A key element of our proposal involves computing development factors, which may be influenced by both the accident date and other features. These development factors serve as the basis for predictions. While we assume close to continuous observations of accident date and reporting delay, the development factors can be expressed at any level of granularity, such as months, quarters, or year and predictions across different granularity levels exhibit coherence. The calculation of development factors relies on the estimation of a hazard function in reverse development time, and we present three distinct methods for estimating this function: the Cox proportional hazard model, a feed-forward neural network, and xgboost (eXtreme gradient boosting). In all three cases, estimation is based on the same partial likelihood that accommodates left truncation and ties in the data. While the first case is a semi-parametric model that assumes in parts a log linear structure, the two machine learning approaches only assume that the baseline and the other factors are multiplicatively separable. Through an extensive simulation study and real-world data application, our approach demonstrates promising results. This paper comes with an accompanying R-package, $\texttt{ReSurv}$, which can be accessed at \url{//github.com/edhofman/ReSurv}

相關內容

Accumulated Local Effects (ALE) is a model-agnostic approach for global explanations of the results of black-box machine learning (ML) algorithms. There are at least three challenges with conducting statistical inference based on ALE: ensuring the reliability of ALE analyses, especially in the context of small datasets; intuitively characterizing a variable's overall effect in ML; and making robust inferences from ML data analysis. In response, we introduce innovative tools and techniques for statistical inference using ALE, establishing bootstrapped confidence intervals tailored to dataset size and introducing ALE effect size measures that intuitively indicate effects on both the outcome variable scale and a normalized scale. Furthermore, we demonstrate how to use these tools to draw reliable statistical inferences, reflecting the flexible patterns ALE adeptly highlights, with implementations available in the 'ale' package in R. This work propels the discourse on ALE and its applicability in ML and statistical analysis forward, offering practical solutions to prevailing challenges in the field.

Quantum machine learning models have shown successful generalization performance even when trained with few data. In this work, through systematic randomization experiments, we show that traditional approaches to understanding generalization fail to explain the behavior of such quantum models. Our experiments reveal that state-of-the-art quantum neural networks accurately fit random states and random labeling of training data. This ability to memorize random data defies current notions of small generalization error, problematizing approaches that build on complexity measures such as the VC dimension, the Rademacher complexity, and all their uniform relatives. We complement our empirical results with a theoretical construction showing that quantum neural networks can fit arbitrary labels to quantum states, hinting at their memorization ability. Our results do not preclude the possibility of good generalization with few training data but rather rule out any possible guarantees based only on the properties of the model family. These findings expose a fundamental challenge in the conventional understanding of generalization in quantum machine learning and highlight the need for a paradigm shift in the study of quantum models for machine learning tasks.

In 2012 Chen and Singer introduced the notion of discrete residues for rational functions as a complete obstruction to rational summability. More explicitly, for a given rational function f(x), there exists a rational function g(x) such that f(x) = g(x+1) - g(x) if and only if every discrete residue of f(x) is zero. Discrete residues have many important further applications beyond summability: to creative telescoping problems, thence to the determination of (differential-)algebraic relations among hypergeometric sequences, and subsequently to the computation of (differential) Galois groups of difference equations. However, the discrete residues of a rational function are defined in terms of its complete partial fraction decomposition, which makes their direct computation impractical due to the high complexity of completely factoring arbitrary denominator polynomials into linear factors. We develop a factorization-free algorithm to compute discrete residues of rational functions, relying only on gcd computations and linear algebra.

Context: Experiment replications play a central role in the scientific method. Although software engineering experimentation has matured a great deal, the number of experiment replications is still relatively small. Software engineering experiments are composed of complex concepts, procedures and artefacts. Laboratory packages are a means of transfer-ring knowledge among researchers to facilitate experiment replications. Objective: This paper investigates the experiment replication process to find out what information is needed to successfully replicate an experiment. Our objective is to propose the content and structure of laboratory packages for software engineering experiments. Method: We evaluated seven replications of three different families of experiments. Each replication had a different experimenter who was, at the time, unfamiliar with the experi-ment. During the first iterations of the study, we identified experimental incidents and then proposed a laboratory package structure that addressed these incidents, including docu-ment usability improvements. We used the later iterations to validate and generalize the laboratory package structure for use in all software engineering experiments. We aimed to solve a specific problem, while at the same time looking at how to contribute to the body of knowledge on laboratory packages. Results: We generated a laboratory package for three different experiments. These packages eased the replication of the respective experiments. The evaluation that we conducted shows that the laboratory package proposal is acceptable and reduces the effort currently required to replicate experiments in software engineering. Conclusion: We think that the content and structure that we propose for laboratory pack-ages can be useful for other software engineering experiments.

We propose a novel neural network architecture based on conformer transducer that adds contextual information flow to the ASR systems. Our method improves the accuracy of recognizing uncommon words while not harming the word error rate of regular words. We explore the uncommon words accuracy improvement when we use the new model and/or shallow fusion with context language model. We found that combination of both provides cumulative gain in uncommon words recognition accuracy.

The stochastic simulation algorithm (SSA) and the corresponding Monte Carlo (MC) method are among the most common approaches for studying stochastic processes. They rely on knowledge of interevent probability density functions (PDFs) and on information about dependencies between all possible events. Analytical representations of a PDF are difficult to specify in advance, in many real life applications. Knowing the shapes of PDFs, and using experimental data, different optimization schemes can be applied in order to evaluate probability density functions and, therefore, the properties of the studied system. Such methods, however, are computationally demanding, and often not feasible. We show that, in the case where experimentally accessed properties are directly related to the frequencies of events involved, it may be possible to replace the heavy Monte Carlo core of optimization schemes with an analytical solution. Such a replacement not only provides a more accurate estimation of the properties of the process, but also reduces the simulation time by a factor of order of the sample size (at least $\approx 10^4$). The proposed analytical approach is valid for any choice of PDF. The accuracy, computational efficiency, and advantages of the method over MC procedures are demonstrated in the exactly solvable case and in the evaluation of branching fractions in controlled radical polymerization (CRP) of acrylic monomers. This polymerization can be modeled by a constrained stochastic process. Constrained systems are quite common, and this makes the method useful for various applications.

Whole slide imaging is fundamental to biomedical microscopy and computational pathology. However, whole slide images (WSIs) present a complex computer vision challenge due to their gigapixel size, diverse histopathologic features, spatial heterogeneity, and limited/absent data annotations. These challenges highlight that supervised training alone can result in suboptimal whole slide representations. Self-supervised representation learning can achieve high-quality WSI visual feature learning for downstream diagnostic tasks, such as cancer diagnosis or molecular genetic prediction. Here, we present a general self-supervised whole slide learning (S3L) framework for gigapixel-scale self-supervision of WSIs. S3L combines data transformation strategies from transformer-based vision and language modeling into a single unified framework to generate paired views for self-supervision. S3L leverages the inherent regional heterogeneity, histologic feature variability, and information redundancy within WSIs to learn high-quality whole-slide representations. We benchmark S3L visual representations on two diagnostic tasks for two biomedical microscopy modalities. S3L significantly outperforms WSI baselines for cancer diagnosis and genetic mutation prediction. Additionally, S3L achieves good performance using both in-domain and out-of-distribution patch encoders, demonstrating good flexibility and generalizability.

[Background] Hackathons are increasingly gaining prominence in Software Engineering (SE) education, lauded for their ability to elevate students' skill sets. [Objective] This paper investigates whether hackathons can impact the motivation of SE students. [Method] We conducted an evaluative case study assessing students' motivations before and after a hackathon, combining quantitative analysis using the Academic Motivation Scale (AMS) and qualitative coding of open-ended responses. [Results] Pre-hackathon findings reveal a diverse range of motivations with an overall acceptance, while post-hackathon responses highlight no statistically significant shift in participants' perceptions. Qualitative findings uncovered themes related to networking, team dynamics, and skill development. From a practical perspective, our findings highlight the potential of hackathons to impact participants' motivation. [Conclusion] While our study enhances the comprehension of hackathons as a motivational tool, it also underscores the need for further exploration of psychometric dimensions in SE educational research.

The Evidential regression network (ENet) estimates a continuous target and its predictive uncertainty without costly Bayesian model averaging. However, it is possible that the target is inaccurately predicted due to the gradient shrinkage problem of the original loss function of the ENet, the negative log marginal likelihood (NLL) loss. In this paper, the objective is to improve the prediction accuracy of the ENet while maintaining its efficient uncertainty estimation by resolving the gradient shrinkage problem. A multi-task learning (MTL) framework, referred to as MT-ENet, is proposed to accomplish this aim. In the MTL, we define the Lipschitz modified mean squared error (MSE) loss function as another loss and add it to the existing NLL loss. The Lipschitz modified MSE loss is designed to mitigate the gradient conflict with the NLL loss by dynamically adjusting its Lipschitz constant. By doing so, the Lipschitz MSE loss does not disturb the uncertainty estimation of the NLL loss. The MT-ENet enhances the predictive accuracy of the ENet without losing uncertainty estimation capability on the synthetic dataset and real-world benchmarks, including drug-target affinity (DTA) regression. Furthermore, the MT-ENet shows remarkable calibration and out-of-distribution detection capability on the DTA benchmarks.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司