亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The multi allocation p-hub median problem (MApHM), the multi allocation uncapacitated hub location problem (MAuHLP) and the multi allocation p-hub location problem (MApHLP) are common hub location problems with several practical applications. HLPs aim to construct a network for routing tasks between different locations. Specifically, a set of hubs must be chosen and each routing must be performed using one or two hubs as stopovers. The costs between two hubs are discounted. The objective is to minimize the total transportation cost in the MApHM and additionally to minimize the set-up costs for the hubs in the MAuHLP and MApHLP. In this paper, an approximation algorithm to solve these problems is developed, which improves the approximation bound for MApHM to 3.451, for MAuHLP to 2.173 and for MApHLP to 4.552 when combined with the algorithm of Benedito & Pedrosa. The proposed algorithm is capable of solving much bigger instances than any exact algorithm in the literature. New benchmark instances have been created and published for evaluation, such that HLP algorithms can be tested and compared on huge instances. The proposed algorithm performs on most instances better than the algorithm of Benedito & Pedrosa, which was the only known approximation algorithm for these problems by now.

相關內容

Based on the signals received across its antennas, a multi-antenna base station (BS) can apply the classic multiple signal classification (MUSIC) algorithm for estimating the angle of arrivals (AOAs) of its incident signals. This method can be leveraged to localize the users if their line-of-sight (LOS) paths to the BS are available. In this paper, we consider a more challenging AOA estimation setup in the intelligent reflecting surface (IRS) assisted integrated sensing and communication (ISAC) system, where LOS paths do not exist between the BS and the users, while the users' signals can be transmitted to the BS merely via their LOS paths to the IRS as well as the LOS path from the IRS to the BS. Specifically, we treat the IRS as the anchor and are interested in estimating the AOAs of the incident signals from the users to the IRS. Note that we have to achieve the above goal based on the signals received by the BS, because the passive IRS cannot process its received signals. However, the signals received across different antennas of the BS only contain AOA information of its incident signals via the LOS path from the IRS to the BS. To tackle this challenge arising from the spatial-domain received signals, we propose an innovative approach to create temporal-domain multi-dimension received signals for estimating the AOAs of the paths from the users to the IRS. Specifically, via a proper design of the user message pattern and the IRS reflecting pattern, we manage to show that our designed temporal-domain multi-dimension signals can be surprisingly expressed as a function of the virtual steering vectors of the IRS towards the users. This amazing result implies that the classic MUSIC algorithm can be applied to our designed temporal-domain multi-dimension signals for accurately estimating the AOAs of the signals from the users to the IRS.

Variational regularization is commonly used to solve linear inverse problems, and involves augmenting a data fidelity by a regularizer. The regularizer is used to promote a priori information and is weighted by a regularization parameter. Selection of an appropriate regularization parameter is critical, with various choices leading to very different reconstructions. Classical strategies used to determine a suitable parameter value include the discrepancy principle and the L-curve criterion, and in recent years a supervised machine learning approach called bilevel learning has been employed. Bilevel learning is a powerful framework to determine optimal parameters and involves solving a nested optimization problem. While previous strategies enjoy various theoretical results, the well-posedness of bilevel learning in this setting is still an open question. In particular, a necessary property is positivity of the determined regularization parameter. In this work, we provide a new condition that better characterizes positivity of optimal regularization parameters than the existing theory. Numerical results verify and explore this new condition for both small and high-dimensional problems.

We derive optimality conditions for the optimum sample allocation problem in stratified sampling, formulated as the determination of the fixed strata sample sizes that minimize the total cost of the survey, under the assumed level of variance of the stratified $\pi$ estimator of the population total (or mean) and one-sided upper bounds imposed on sample sizes in strata. In this context, we presume that the variance function is of some generic form that, in particular, covers the case of the simple random sampling without replacement design in strata. The optimality conditions mentioned above will be derived from the Karush-Kuhn-Tucker conditions. Based on the established optimality conditions, we provide a formal proof of the optimality of the existing procedure, termed here as LRNA, which solves the allocation problem considered. We formulate the LRNA in such a way that it also provides the solution to the classical optimum allocation problem (i.e. minimization of the estimator's variance under a fixed total cost) under one-sided lower bounds imposed on sample sizes in strata. In this context, the LRNA can be considered as a counterparty to the popular recursive Neyman allocation procedure that is used to solve the classical problem of an optimum sample allocation with added one-sided upper bounds. Ready-to-use R-implementation of the LRNA is available through our stratallo package, which is published on the Comprehensive R Archive Network (CRAN) package repository.

Multimodal emotion recognition (MER) aims to detect the emotional status of a given expression by combining the speech and text information. Intuitively, label information should be capable of helping the model locate the salient tokens/frames relevant to the specific emotion, which finally facilitates the MER task. Inspired by this, we propose a novel approach for MER by leveraging label information. Specifically, we first obtain the representative label embeddings for both text and speech modalities, then learn the label-enhanced text/speech representations for each utterance via label-token and label-frame interactions. Finally, we devise a novel label-guided attentive fusion module to fuse the label-aware text and speech representations for emotion classification. Extensive experiments were conducted on the public IEMOCAP dataset, and experimental results demonstrate that our proposed approach outperforms existing baselines and achieves new state-of-the-art performance.

Regularized m-estimators are widely used due to their ability of recovering a low-dimensional model in high-dimensional scenarios. Some recent efforts on this subject focused on creating a unified framework for establishing oracle bounds, and deriving conditions for support recovery. Under this same framework, we propose a new Generalized Information Criteria (GIC) that takes into consideration the sparsity pattern one wishes to recover. We obtain non-asymptotic model selection bounds and sufficient conditions for model selection consistency of the GIC. Furthermore, we show that the GIC can also be used for selecting the regularization parameter within a regularized $m$-estimation framework, which allows practical use of the GIC for model selection in high-dimensional scenarios. We provide examples of group LASSO in the context of generalized linear regression and low rank matrix regression.

As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.

Differentially private stochastic gradient descent (DP-SGD) is the workhorse algorithm for recent advances in private deep learning. It provides a single privacy guarantee to all datapoints in the dataset. We propose output-specific $(\varepsilon,\delta)$-DP to characterize privacy guarantees for individual examples when releasing models trained by DP-SGD. We also design an efficient algorithm to investigate individual privacy across a number of datasets. We find that most examples enjoy stronger privacy guarantees than the worst-case bound. We further discover that the training loss and the privacy parameter of an example are well-correlated. This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees. For example, on CIFAR-10, the average $\varepsilon$ of the class with the lowest test accuracy is 44.2\% higher than that of the class with the highest accuracy.

Delay alignment modulation (DAM) is an emerging technique for achieving inter-symbol interference (ISI)-free wideband communications using spatial-delay processing, without relying on channel equalization or multi-carrier transmission. However, existing works on DAM only consider multiple-input single-output (MISO) communication systems and assume time-invariant channels. In this paper, by extending DAM to time-variant frequency-selective multiple-input multiple-output (MIMO) channels, we propose a novel technique termed \emph{delay-Doppler alignment modulation} (DDAM). Specifically, by leveraging \emph{delay-Doppler compensation} and \emph{path-based beamforming}, the Doppler effect of each multi-path can be eliminated and all multi-path signal components may reach the receiver concurrently and constructively. We first show that by applying path-based zero-forcing (ZF) precoding and receive combining, DDAM can transform the original time-variant frequency-selective channels into time-invariant ISI-free channels. The necessary and/or sufficient conditions to achieve such a transformation are derived. Then an asymptotic analysis is provided by showing that when the number of base station (BS) antennas is much larger than that of channel paths, DDAM enables time-invariant ISI-free channels with the simple delay-Doppler compensation and path-based maximal-ratio transmission (MRT) beamforming. Furthermore, for the general DDAM design with some tolerable ISI, the path-based transmit precoding and receive combining matrices are optimized to maximize the spectral efficiency. Numerical results are provided to compare the proposed DDAM technique with various benchmarking schemes, including MIMO-orthogonal time frequency space (OTFS), MIMO-orthogonal frequency-division multiplexing (OFDM) without or with carrier frequency offset (CFO) compensation, and beam alignment along the dominant path.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司