亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study active structure learning of Bayesian networks in an observational setting, in which there are external limitations on the number of variable values that can be observed from the same sample. Random samples are drawn from the joint distribution of the network variables, and the algorithm iteratively selects which variables to observe in the next sample. We propose a new active learning algorithm for this setting, that finds with a high probability a structure with a score that is $\epsilon$-close to the optimal score. We show that for a class of distributions that we term stable, a sample complexity reduction of up to a factor of $\widetilde{\Omega}(d^3)$ can be obtained, where $d$ is the number of network variables. We further show that in the worst case, the sample complexity of the active algorithm is guaranteed to be almost the same as that of a naive baseline algorithm. To supplement the theoretical results, we report experiments that compare the performance of the new active algorithm to the naive baseline and demonstrate the sample complexity improvements. Code for the algorithm and for the experiments is provided at //github.com/noabdavid/activeBNSL.

相關內容

The learning speed of feed-forward neural networks is notoriously slow and has presented a bottleneck in deep learning applications for several decades. For instance, gradient-based learning algorithms, which are used extensively to train neural networks, tend to work slowly when all of the network parameters must be iteratively tuned. To counter this, both researchers and practitioners have tried introducing randomness to reduce the learning requirement. Based on the original construction of Igelnik and Pao, single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice, but the necessary theoretical justification is lacking. In this paper, we begin to fill this theoretical gap. We provide a (corrected) rigorous proof that the Igelnik and Pao construction is a universal approximator for continuous functions on compact domains, with approximation error decaying asymptotically like $O(1/\sqrt{n})$ for the number $n$ of network nodes. We then extend this result to the non-asymptotic setting, proving that one can achieve any desired approximation error with high probability provided $n$ is sufficiently large. We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space, providing theoretical guarantees in both the asymptotic and non-asymptotic forms. Finally, we illustrate our results on manifolds with numerical experiments.

Active inference provides a general framework for behavior and learning in autonomous agents. It states that an agent will attempt to minimize its variational free energy, defined in terms of beliefs over observations, internal states and policies. Traditionally, every aspect of a discrete active inference model must be specified by hand, i.e. by manually defining the hidden state space structure, as well as the required distributions such as likelihood and transition probabilities. Recently, efforts have been made to learn state space representations automatically from observations using deep neural networks. In this paper, we present a novel approach of learning state spaces using quantum physics-inspired tensor networks. The ability of tensor networks to represent the probabilistic nature of quantum states as well as to reduce large state spaces makes tensor networks a natural candidate for active inference. We show how tensor networks can be used as a generative model for sequential data. Furthermore, we show how one can obtain beliefs from such a generative model and how an active inference agent can use these to compute the expected free energy. Finally, we demonstrate our method on the classic T-maze environment.

We study a repeated information design problem faced by an informed sender who tries to influence the behavior of a self-interested receiver. We consider settings where the receiver faces a sequential decision making (SDM) problem. At each round, the sender observes the realizations of random events in the SDM problem. This begets the challenge of how to incrementally disclose such information to the receiver to persuade them to follow (desirable) action recommendations. We study the case in which the sender does not know random events probabilities, and, thus, they have to gradually learn them while persuading the receiver. We start by providing a non-trivial polytopal approximation of the set of sender's persuasive information structures. This is crucial to design efficient learning algorithms. Next, we prove a negative result: no learning algorithm can be persuasive. Thus, we relax persuasiveness requirements by focusing on algorithms that guarantee that the receiver's regret in following recommendations grows sub-linearly. In the full-feedback setting -- where the sender observes all random events realizations -- , we provide an algorithm with $\tilde{O}(\sqrt{T})$ regret for both the sender and the receiver. Instead, in the bandit-feedback setting -- where the sender only observes the realizations of random events actually occurring in the SDM problem -- , we design an algorithm that, given an $\alpha \in [1/2, 1]$ as input, ensures $\tilde{O}({T^\alpha})$ and $\tilde{O}( T^{\max \{ \alpha, 1-\frac{\alpha}{2} \} })$ regrets, for the sender and the receiver respectively. This result is complemented by a lower bound showing that such a regrets trade-off is essentially tight.

This paper introduces a new neural network based prior for real valued functions on $\mathbb R^d$ which, by construction, is more easily and cheaply scaled up in the domain dimension $d$ compared to the usual Karhunen-Lo\`eve function space prior. The new prior is a Gaussian neural network prior, where each weight and bias has an independent Gaussian prior, but with the key difference that the variances decrease in the width of the network in such a way that the resulting function is \emph{almost surely} well defined in the limit of an infinite width network. We show that in a Bayesian treatment of inferring unknown functions, the induced posterior over functions is amenable to Monte Carlo sampling using Hilbert space Markov chain Monte Carlo (MCMC) methods. This type of MCMC is popular, e.g. in the Bayesian Inverse Problems literature, because it is stable under \emph{mesh refinement}, i.e. the acceptance probability does not shrink to $0$ as more parameters of the function's prior are introduced, even \emph{ad infinitum}. In numerical examples we demonstrate these stated competitive advantages over other function space priors. We also implement examples in Bayesian Reinforcement Learning to automate tasks from data and demonstrate, for the first time, stability of MCMC to mesh refinement for these type of problems.

In the context of solving inverse problems for physics applications within a Bayesian framework, we present a new approach, Markov Chain Generative Adversarial Neural Networks (MCGANs), to alleviate the computational costs associated with solving the Bayesian inference problem. GANs pose a very suitable framework to aid in the solution of Bayesian inference problems, as they are designed to generate samples from complicated high-dimensional distributions. By training a GAN to sample from a low-dimensional latent space and then embedding it in a Markov Chain Monte Carlo method, we can highly efficiently sample from the posterior, by replacing both the high-dimensional prior and the expensive forward map. We prove that the proposed methodology converges to the true posterior in the Wasserstein-1 distance and that sampling from the latent space is equivalent to sampling in the high-dimensional space in a weak sense. The method is showcased on two test cases where we perform both state and parameter estimation simultaneously. The approach is shown to be up to two orders of magnitude more accurate than alternative approaches while also being up to two orders of magnitude computationally faster, in multiple test cases, including the important engineering setting of detecting leaks in pipelines.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks. Prior methods have been focused on overcoming this problem on convolutional neural networks (CNNs), where the input samples like images lie in a grid domain, but have largely overlooked graph neural networks (GNNs) that handle non-grid data. In this paper, we propose a novel scheme dedicated to overcoming catastrophic forgetting problem and hence strengthen continual learning in GNNs. At the heart of our approach is a generic module, termed as topology-aware weight preserving~(TWP), applicable to arbitrary form of GNNs in a plug-and-play fashion. Unlike the main stream of CNN-based continual learning methods that rely on solely slowing down the updates of parameters important to the downstream task, TWP explicitly explores the local structures of the input graph, and attempts to stabilize the parameters playing pivotal roles in the topological aggregation. We evaluate TWP on different GNN backbones over several datasets, and demonstrate that it yields performances superior to the state of the art. Code is publicly available at \url{//github.com/hhliu79/TWP}.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司