亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Confidence interval performance is typically assessed in terms of two criteria: coverage probability and interval width (or margin of error). In this work we assess the performance of four common proportion interval estimators: the Wald, Clopper- Pearson, Wilson and Agresti-Coull, in the context of rare-event probabilities. We define the precision of the interval estimate in terms of a relative margin of error which ensures consistency with the magnitude of the proportion. Thus, confidence interval performance is assessed in terms of achieving a desired coverage probability whilst satisfying the specified relative margin of error. We show that when interval performance is considered using both coverage probability and relative margin of error, all four interval estimators perform somewhat similarly for a given sample size and confidence level. We identify relative margin of error values that result in satisfactory coverage whilst being conservative in terms of sample size requirements, and hence suggest a range of values that can be adopted in practice. The proposed relative margin of error scheme is evaluated analytically, by simulation, and by application to a number of recent studies from the literature.

相關內容

Fuzzing is an important method to discover vulnerabilities in programs. Despite considerable progress in this area in the past years, measuring and comparing the effectiveness of fuzzers is still an open research question. In software testing, the gold standard for evaluating test quality is mutation analysis, which evaluates a test's ability to detect synthetic bugs: If a set of tests fails to detect such mutations, it is expected to also fail to detect real bugs. Mutation analysis subsumes various coverage measures and provides a large and diverse set of faults that can be arbitrarily hard to trigger and detect, thus preventing the problems of saturation and overfitting. Unfortunately, the cost of traditional mutation analysis is exorbitant for fuzzing, as mutations need independent evaluation. In this paper, we apply modern mutation analysis techniques that pool multiple mutations and allow us -- for the first time -- to evaluate and compare fuzzers with mutation analysis. We introduce an evaluation bench for fuzzers and apply it to a number of popular fuzzers and subjects. In a comprehensive evaluation, we show how we can use it to assess fuzzer performance and measure the impact of improved techniques. The required CPU time remains manageable: 4.09 CPU years are needed to analyze a fuzzer on seven subjects and a total of 141,278 mutations. We find that today's fuzzers can detect only a small percentage of mutations, which should be seen as a challenge for future research -- notably in improving (1) detecting failures beyond generic crashes (2) triggering mutations (and thus faults).

Let $\hat\Sigma=\frac{1}{n}\sum_{i=1}^n X_i\otimes X_i$ denote the sample covariance operator of centered i.i.d. observations $X_1,\dots,X_n$ in a real separable Hilbert space, and let $\Sigma=\mathbf{E}(X_1\otimes X_1)$. The focus of this paper is to understand how well the bootstrap can approximate the distribution of the operator norm error $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$, in settings where the eigenvalues of $\Sigma$ decay as $\lambda_j(\Sigma)\asymp j^{-2\beta}$ for some fixed parameter $\beta>1/2$. Our main result shows that the bootstrap can approximate the distribution of $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$ at a rate of order $n^{-\frac{\beta-1/2}{2\beta+4+\epsilon}}$ with respect to the Kolmogorov metric, for any fixed $\epsilon>0$. In particular, this shows that the bootstrap can achieve near $n^{-1/2}$ rates in the regime of large $\beta$--which substantially improves on previous near $n^{-1/6}$ rates in the same regime. In addition to obtaining faster rates, our analysis leverages a fundamentally different perspective based on coordinate-free techniques. Moreover, our result holds in greater generality, and we propose a new model that is compatible with both elliptical and Mar\v{c}enko-Pastur models in high-dimensional Euclidean spaces, which may be of independent interest.

Randomized controlled trials (RCTs) are a cornerstone of comparative effectiveness because they remove the confounding bias present in observational studies. However, RCTs are typically much smaller than observational studies because of financial and ethical considerations. Therefore it is of great interest to be able to incorporate plentiful observational data into the analysis of smaller RCTs. Previous estimators developed for this purpose rely on unrealistic additional assumptions without which the added data can bias the effect estimate. Recent work proposed an alternative method (prognostic adjustment) that imposes no additional assumption and increases efficiency in the analysis of RCTs. The idea is to use the observational data to learn a prognostic model: a regression of the outcome onto the covariates. The predictions from this model, generated from the RCT subjects' baseline variables, are used as a covariate in a linear model. In this work, we extend this framework to work when conducting inference with nonparametric efficient estimators in trial analysis. Using simulations, we find that this approach provides greater power (i.e., smaller standard errors) than without prognostic adjustment, especially when the trial is small. We also find that the method is robust to observed or unobserved shifts between the observational and trial populations and does not introduce bias. Lastly, we showcase this estimator leveraging real-world historical data on a randomized blood transfusion study of trauma patients.

Covariate shift may impact the operational safety performance of neural networks. A re-evaluation of the safety performance, however, requires collecting new operational data and creating corresponding ground truth labels, which often is not possible during operation. We are therefore proposing to reshape the initial test set, as used for the safety performance evaluation prior to deployment, based on an approximation of the operational data. This approximation is obtained by observing and learning the distribution of activation patterns of neurons in the network during operation. The reshaped test set reflects the distribution of neuron activation values as observed during operation, and may therefore be used for re-evaluating safety performance in the presence of covariate shift. First, we derive conservative bounds on the values of neurons by applying finite binning and static dataflow analysis. Second, we formulate a mixed integer linear programming (MILP) constraint for constructing the minimum set of data points to be removed in the test set, such that the difference between the discretized test and operational distributions is bounded. We discuss potential benefits and limitations of this constraint-based approach based on our initial experience with an implemented research prototype.

A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step size control stability when combined with explicit Runge-Kutta methods and demonstrate that a standard I controller is unstable while more advanced PI and PID controllers can be designed to be stable. We compare the stability properties of residual-based estimators and classical error estimators based on an embedded Runge-Kutta method both analytically and in numerical experiments.

Entanglement represents ``\textit{the}'' key resource for several applications of quantum information processing, ranging from quantum communications to distributed quantum computing. Despite its fundamental importance, deterministic generation of maximally entangled qubits represents an on-going open problem. Here, we design a novel generation scheme exhibiting two attractive features, namely, i) deterministically generating different classes -- namely, GHZ-like, W-like and graph states -- of genuinely multipartite entangled states, ii) without requiring any direct interaction between the qubits. Indeed, the only necessary condition is the possibility of coherently controlling -- according to the indefinite causal order framework -- the causal order among the unitaries acting on the qubits. Through the paper, we analyze and derive the conditions on the unitaries for deterministic generation, and we provide examples for unitaries practical implementation. We conclude the paper by discussing the scalability of the proposed scheme to higher dimensional genuine multipartite entanglement (GME) states and by introducing some possible applications of the proposal for quantum networks.

The properties of the generalized Waring distribution defined on the non negative integers are reviewed. Formulas for its moments and its mode are given. A construction as a mixture of negative binomial distributions is also presented. Then we turn to the Petersen model for estimating the population size $N$ in a two-way capture recapture experiment. We construct a Bayesian model for $N$ by combining a Waring prior with the hypergeometric distribution for the number of units caught twice in the experiment. Confidence intervals for $N$ are obtained using quantiles of the posterior, a generalized Waring distribution. The standard confidence interval for the population size constructed using the asymptotic variance of Petersen estimator and .5 logit transformed interval are shown to be special cases of the generalized Waring confidence interval. The true coverage of this interval is shown to be bigger than or equal to its nominal converage in small populations, regardless of the capture probabilities. In addition, its length is substantially smaller than that of the .5 logit transformed interval. Thus a generalized Waring confidence interval appears to be the best way to quantify the uncertainty of the Petersen estimator for populations size.

Quantum neural networks (QNNs) use parameterized quantum circuits with data-dependent inputs and generate outputs through the evaluation of expectation values. Calculating these expectation values necessitates repeated circuit evaluations, thus introducing fundamental finite-sampling noise even on error-free quantum computers. We reduce this noise by introducing the variance regularization, a technique for reducing the variance of the expectation value during the quantum model training. This technique requires no additional circuit evaluations if the QNN is properly constructed. Our empirical findings demonstrate the reduced variance speeds up the training and lowers the output noise as well as decreases the number of necessary evaluations of gradient circuits. This regularization method is benchmarked on the regression of multiple functions. We show that in our examples, it lowers the variance by an order of magnitude on average and leads to a significantly reduced noise level of the QNN. We finally demonstrate QNN training on a real quantum device and evaluate the impact of error mitigation. Here, the optimization is feasible only due to the reduced number of necessary shots in the gradient evaluation resulting from the reduced variance.

Methods for anomaly detection of new physics processes are often limited to low-dimensional spaces due to the difficulty of learning high-dimensional probability densities. Particularly at the constituent level, incorporating desirable properties such as permutation invariance and variable-length inputs becomes difficult within popular density estimation methods. In this work, we introduce a permutation-invariant density estimator for particle physics data based on diffusion models, specifically designed to handle variable-length inputs. We demonstrate the efficacy of our methodology by utilizing the learned density as a permutation-invariant anomaly detection score, effectively identifying jets with low likelihood under the background-only hypothesis. To validate our density estimation method, we investigate the ratio of learned densities and compare to those obtained by a supervised classification algorithm.

Accurate error estimation is crucial in model order reduction, both to obtain small reduced-order models and to certify their accuracy when deployed in downstream applications such as digital twins. In existing a posteriori error estimation approaches, knowledge about the time integration scheme is mandatory, e.g., the residual-based error estimators proposed for the reduced basis method. This poses a challenge when automatic ordinary differential equation solver libraries are used to perform the time integration. To address this, we present a data-enhanced approach for a posteriori error estimation. Our new formulation enables residual-based error estimators to be independent of any time integration method. To achieve this, we introduce a corrected reduced-order model which takes into account a data-driven closure term for improved accuracy. The closure term, subject to mild assumptions, is related to the local truncation error of the corresponding time integration scheme. We propose efficient computational schemes for approximating the closure term, at the cost of a modest amount of training data. Furthermore, the new error estimator is incorporated within a greedy process to obtain parametric reduced-order models. Numerical results on three different systems show the accuracy of the proposed error estimation approach and its ability to produce ROMs that generalize well.

北京阿比特科技有限公司