The design of microfluidic devices is a cumbersome and tedious process that can be significantly improved by simulation. Methods based on Computational Fluid Dynamics (CFD) are considered state-of-the-art but require extensive compute time-oftentimes limiting the size of microfluidic devices that can be simulated. Simulation methods that abstract the underlying physics on a higher level generally provide results instantly, but the fidelity of these methods is usually worse. In this work, a simulation method that accelerates CFD simulations by exploiting simulation methods on higher levels of abstraction is proposed. Case studies confirm that the proposed method accelerates CFD simulations by multiple factors (often several orders of magnitude) while maintaining the fidelity of CFD simulations.
Microservices are increasingly used in modern applications, leading to a growing need for effective service composition solutions. However, we argue that traditional API-centric composition mechanisms (e.g., RPC, REST, and Pub/Sub) hamper the modularity of microservices. These mechanisms introduce rigid code-level coupling, scatter composition logic, and hinder visibility into cross-service data exchanges. Ultimately, these limitations complicate the maintenance and evolution of microservice-based applications. In response, we propose a rethinking of service composition and present Knactor, a new data-centric composition framework to restore the modularity that microservices were intended to offer. Knactor decouples service composition from service development, allowing composition to be implemented as explicit data exchanges among multiple services. Our initial case study suggests that Knactor simplifies service composition and creates new opportunities for optimizations.
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions. Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework, separating rationale generation from answer inference. However, these approaches often fall short due to the inadequate quality of the generated rationales. In this work, we delve into the importance of rationales in model reasoning. We observe that when rationales are completely accurate, the model's accuracy significantly improves, highlighting the need for high-quality rationale generation. Motivated by this, we propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process. This approach not only enhances the quality of generated rationales but also leads to more accurate and robust answers. Through extensive experiments, we demonstrate that our approach significantly improves model performance across various benchmarks. Remarkably, we show that even smaller base models, when equipped with our proposed approach, can achieve results comparable to those of larger models, illustrating the potential of our approach in harnessing the power of rationales for improved multimodal reasoning. The code is available at //github.com/chengtan9907/mc-cot.
Stream processing has become a critical component in the architecture of modern applications. With the exponential growth of data generation from sources such as the Internet of Things, business intelligence, and telecommunications, real-time processing of unbounded data streams has become a necessity. DSP systems provide a solution to this challenge, offering high horizontal scalability, fault-tolerant execution, and the ability to process data streams from multiple sources in a single DSP job. Often enough though, data streams need to be enriched with extra information for correct processing, which introduces additional dependencies and potential bottlenecks. In this paper, we present an in-depth evaluation of data enrichment methods for DSP systems and identify the different use cases for stream processing in modern systems. Using a representative DSP system and conducting the evaluation in a realistic cloud environment, we found that outsourcing enrichment data to the DSP system can improve performance for specific use cases. However, this increased resource consumption highlights the need for stream processing solutions specifically designed for the performance-intensive workloads of cloud-based applications.
Diffusion models are powerful generative models that achieve state-of-the-art performance in tasks such as image synthesis. However, training them demands substantial amounts of data and computational resources. Continual learning would allow for incrementally learning new tasks and accumulating knowledge, thus reusing already trained models would be possible. One potentially suitable approach is generative replay, where a copy of a generative model trained on previous tasks produces synthetic data that are interleaved with data from the current task. However, standard generative replay applied to diffusion models results in a catastrophic loss in denoising capabilities. In this paper, we propose generative distillation, an approach that distils the entire reverse process of a diffusion model. We demonstrate that our approach significantly improves the continual learning performance of generative replay with only a moderate increase in the computational costs.
CP decomposition is a powerful tool for data science, especially gene analysis, deep learning, and quantum computation. However, the application of tensor decomposition is largely hindered by the exponential increment of the computational complexity and storage consumption with the size of tensors. While the data in our real world is usually presented as trillion- or even exascale-scale tensors, existing work can only support billion-scale scale tensors. In our work, we propose the Exascale-Tensor to mitigate the significant gap. Specifically, we propose a compression-based tensor decomposition framework, namely the exascale-tensor, to support exascale tensor decomposition. Then, we carefully analyze the inherent parallelism and propose a bag of strategies to improve computational efficiency. Last, we conduct experiments to decompose tensors ranging from million-scale to trillion-scale for evaluation. Compared to the baselines, the exascale-tensor supports 8,000x larger tensors and a speedup up to 6.95x. We also apply our method to two real-world applications, including gene analysis and tensor layer neural networks, of which the numeric results demonstrate the scalability and effectiveness of our method.
Language models are often used as the backbone of modern dialogue systems. These models are pre-trained on large amounts of written fluent language. Repetition is typically penalised when evaluating language model generations. However, it is a key component of dialogue. Humans use local and partner specific repetitions; these are preferred by human users and lead to more successful communication in dialogue. In this study, we evaluate (a) whether language models produce human-like levels of repetition in dialogue, and (b) what are the processing mechanisms related to lexical re-use they use during comprehension. We believe that such joint analysis of model production and comprehension behaviour can inform the development of cognitively inspired dialogue generation systems.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.