Literary texts are usually rich in meanings and their interpretation complicates corpus studies and automatic processing. There have been several attempts to create collections of literary texts with annotation of literary elements like the author's speech, characters, events, scenes etc. However, they resulted in small collections and standalone rules for annotation. The present article describes an experiment on lexical annotation of text worlds in a literary work and quantitative methods of their comparison. The experiment shows that for a well-agreed tag assignment annotation rules should be set much more strictly. However, if borders between text worlds and other elements are the result of a subjective interpretation, they should be modeled as fuzzy entities.
Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for Natural Language Understanding tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks. However, for languages other than English such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model achieves top results for some English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and has also competitive performance against monolingual models in English tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it.
Emojis are widely used in online social networks to express emotions, attitudes, and opinions. As emotional-oriented characters, emojis can be modeled as important features of emotions towards the recipient or subject for sentiment analysis. However, existing methods mainly take emojis as heuristic information that fails to resolve the problem of ambiguity noise. Recent researches have utilized emojis as an independent input to classify text sentiment but they ignore the emotional impact of the interaction between text and emojis. It results that the emotional semantics of emojis cannot be fully explored. In this paper, we propose an emoji-based co-attention network that learns the mutual emotional semantics between text and emojis on microblogs. Our model adopts the co-attention mechanism based on bidirectional long short-term memory incorporating the text and emojis, and integrates a squeeze-and-excitation block in a convolutional neural network classifier to increase its sensitivity to emotional semantic features. Experimental results show that the proposed method can significantly outperform several baselines for sentiment analysis on short texts of social media.
Entity relationship extraction envisions the automatic generation of semantic data models from collections of text, by automatic recognition of entities, by association of entities to form relationships, and by classifying these instances to assign them to entity sets (or classes) and relationship sets (or associations). As a first step in this direction, the Lokahi prototype can extract entities based on the TF*IDF measure, and generate semantic relationships based on document-level co-occurrence statistics, for example with likelihood ratios and pointwise mutual information. This paper presents results of an explorative, prototypical, qualitative and synthetic research, summarizes insights from two research projects and, based on this, indicates an outline for further research in the field of entity relationship extraction from text.
We tackle the challenging problem of multi-agent cooperative motion planning for complex tasks described using signal temporal logic (STL), where robots can have nonlinear and nonholonomic dynamics. Existing methods in multi-agent motion planning, especially those based on discrete abstractions and model predictive control (MPC), suffer from limited scalability with respect to the complexity of the task, the size of the workspace, and the planning horizon. We present a method based on {\em timed waypoints\/} to address this issue. We show that timed waypoints can help abstract nonlinear behaviors of the system as safety envelopes around the reference path defined by those waypoints. Then the search for waypoints satisfying the STL specifications can be inductively encoded as a mixed-integer linear program. The agents following the synthesized timed waypoints have their tasks automatically allocated, and are guaranteed to satisfy the STL specifications while avoiding collisions. We evaluate the algorithm on a wide variety of benchmarks. Results show that it supports multi-agent planning from complex specification over long planning horizons, and significantly outperforms state-of-the-art abstraction-based and MPC-based motion planning methods. The implementation is available at //github.com/sundw2014/STLPlanning.
In recent times, a large number of people have been involved in establishing their own businesses. Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second. Though chatbots perform well in task-oriented activities, in most cases they fail to understand personalized opinions, statements or even queries which later impact the organization for poor service management. Lack of understanding capabilities in bots disinterest humans to continue conversations with them. Usually, chatbots give absurd responses when they are unable to interpret a user's text accurately. Extracting the client reviews from conversations by using chatbots, organizations can reduce the major gap of understanding between the users and the chatbot and improve their quality of products and services.Thus, in our research we incorporated all the key elements that are necessary for a chatbot to analyse and understand an input text precisely and accurately. We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence. The efficiency of our approach can be demonstrated accordingly by the detailed analysis.
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining semantic information to assist text recognition attracts less attention, only RNN-like structures are explored to implicitly model semantic information. However, we observe that RNN based methods have some obvious shortcomings, such as time-dependent decoding manner and one-way serial transmission of semantic context, which greatly limit the help of semantic information and the computation efficiency. To mitigate these limitations, we propose a novel end-to-end trainable framework named semantic reasoning network (SRN) for accurate scene text recognition, where a global semantic reasoning module (GSRM) is introduced to capture global semantic context through multi-way parallel transmission. The state-of-the-art results on 7 public benchmarks, including regular text, irregular text and non-Latin long text, verify the effectiveness and robustness of the proposed method. In addition, the speed of SRN has significant advantages over the RNN based methods, demonstrating its value in practical use.
The unsupervised text clustering is one of the major tasks in natural language processing (NLP) and remains a difficult and complex problem. Conventional \mbox{methods} generally treat this task using separated steps, including text representation learning and clustering the representations. As an improvement, neural methods have also been introduced for continuous representation learning to address the sparsity problem. However, the multi-step process still deviates from the unified optimization target. Especially the second step of cluster is generally performed with conventional methods such as k-Means. We propose a pure neural framework for text clustering in an end-to-end manner. It jointly learns the text representation and the clustering model. Our model works well when the context can be obtained, which is nearly always the case in the field of NLP. We have our method \mbox{evaluated} on two widely used benchmarks: IMDB movie reviews for sentiment classification and $20$-Newsgroup for topic categorization. Despite its simplicity, experiments show the model outperforms previous clustering methods by a large margin. Furthermore, the model is also verified on English wiki dataset as a large corpus.
Generating character-level features is an important step for achieving good results in various natural language processing tasks. To alleviate the need for human labor in generating hand-crafted features, methods that utilize neural architectures such as Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) to automatically extract such features have been proposed and have shown great results. However, CNN generates position-independent features, and RNN is slow since it needs to process the characters sequentially. In this paper, we propose a novel method of using a densely connected network to automatically extract character-level features. The proposed method does not require any language or task specific assumptions, and shows robustness and effectiveness while being faster than CNN- or RNN-based methods. Evaluating this method on three sequence labeling tasks - slot tagging, Part-of-Speech (POS) tagging, and Named-Entity Recognition (NER) - we obtain state-of-the-art performance with a 96.62 F1-score and 97.73% accuracy on slot tagging and POS tagging, respectively, and comparable performance to the state-of-the-art 91.13 F1-score on NER.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
Given the rise of a new approach to MT, Neural MT (NMT), and its promising performance on different text types, we assess the translation quality it can attain on what is perceived to be the greatest challenge for MT: literary text. Specifically, we target novels, arguably the most popular type of literary text. We build a literary-adapted NMT system for the English-to-Catalan translation direction and evaluate it against a system pertaining to the previous dominant paradigm in MT: statistical phrase-based MT (PBSMT). To this end, for the first time we train MT systems, both NMT and PBSMT, on large amounts of literary text (over 100 million words) and evaluate them on a set of twelve widely known novels spanning from the the 1920s to the present day. According to the BLEU automatic evaluation metric, NMT is significantly better than PBSMT (p < 0.01) on all the novels considered. Overall, NMT results in a 11% relative improvement (3 points absolute) over PBSMT. A complementary human evaluation on three of the books shows that between 17% and 34% of the translations, depending on the book, produced by NMT (versus 8% and 20% with PBSMT) are perceived by native speakers of the target language to be of equivalent quality to translations produced by a professional human translator.