亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To advance the circular economy (CE), it is crucial to gain insights into the evolution of public sentiments, cognitive pathways of the masses concerning circular products and digital technology, and recognise the primary concerns. To achieve this, we collected data related to the CE from diverse platforms including Twitter, Reddit, and The Guardian. This comprehensive data collection spanned across three distinct strata of the public: the general public, professionals, and official sources. Subsequently, we utilised three topic models on the collected data. Topic modelling represents a type of data-driven and machine learning approach for text mining, capable of automatically categorising a large number of documents into distinct semantic groups. Simultaneously, these groups are described by topics, and these topics can aid in understanding the semantic content of documents at a high level. However, the performance of topic modelling may vary depending on different hyperparameter values. Therefore, in this study, we proposed a framework for topic modelling with hyperparameter optimisation for CE and conducted a series of systematic experiments to ensure that topic models are set with appropriate hyperparameters and to gain insights into the correlations between the CE and public opinion based on well-established models. The results of this study indicate that concerns about sustainability and economic impact persist across all three datasets. Official sources demonstrate a higher level of engagement with the application and regulation of CE. To the best of our knowledge, this study is pioneering in investigating various levels of public opinions concerning CE through topic modelling with the exploration of hyperparameter optimisation.

相關內容

Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at //github.com/kamanphoebe/Look-into-MoEs.

Lottery ticket hypothesis for deep neural networks emphasizes the importance of initialization used to re-train the sparser networks obtained using the iterative magnitude pruning process. An explanation for why the specific initialization proposed by the lottery ticket hypothesis tends to work better in terms of generalization (and training) performance has been lacking. Moreover, the underlying principles in iterative magnitude pruning, like the pruning of smaller magnitude weights and the role of the iterative process, lack full understanding and explanation. In this work, we attempt to provide insights into these phenomena by empirically studying the volume/geometry and loss landscape characteristics of the solutions obtained at various stages of the iterative magnitude pruning process.

The massive volume of online information along with the issue of misinformation has spurred active research in the automation of fact-checking. Like fact-checking by human experts, it is not enough for an automated fact-checker to just be accurate, but also be able to inform and convince the user of the validity of its predictions. This becomes viable with explainable artificial intelligence (XAI). In this work, we conduct a study of XAI fact-checkers involving 180 participants to determine how users' actions towards news and their attitudes towards explanations are affected by the XAI. Our results suggest that XAI has limited effects on users' agreement with the veracity prediction of the automated fact-checker and on their intent to share news. However, XAI nudges users towards forming uniform judgments of news veracity, thereby signaling their reliance on the explanations. We also found polarizing preferences towards XAI and raise several design considerations on them.

We introduce a simulation environment to facilitate research into emergent collective behaviour, with a focus on replicating the dynamics of ant colonies. By leveraging real-world data, the environment simulates a target ant trail that a controllable agent must learn to replicate, using sensory data observed by the target ant. This work aims to contribute to the neuroevolution of models for collective behaviour, focusing on evolving neural architectures that encode domain-specific behaviours in the network topology. By evolving models that can be modified and studied in a controlled environment, we can uncover the necessary conditions required for collective behaviours to emerge. We hope this environment will be useful to those studying the role of interactions in emergent behaviour within collective systems.

Distributed systems can be subject to various kinds of partial failures, therefore building fault-tolerance or failure mitigation mechanisms for distributed systems remains an important domain of research. In this paper, we present a calculus to formally model distributed systems subject to crash failures with recovery. The recovery model considered in the paper is weak, in the sense that it makes no assumption on the exact state in which a failed node resumes its execution, only its identity has to be distinguishable from past incarnations of itself. Our calculus is inspired in part by the Erlang programming language and in part by the distributed $\pi$-calculus with nodes and link failures (D$\pi$F) introduced by Francalanza and Hennessy. In order to reason about distributed systems with failures and recovery we develop a behavioral theory for our calculus, in the form of a contextual equivalence, and of a fully abstract coinductive characterization of this equivalence by means of a labelled transition system semantics and its associated weak bisimilarity. This result is valuable for it provides a compositional proof technique for proving or disproving contextual equivalence between systems.

Stance detection holds great potential for enhancing the quality of online political discussions, as it has shown to be useful for summarizing discussions, detecting misinformation, and evaluating opinion distributions. Usually, transformer-based models are used directly for stance detection, which require large amounts of data. However, the broad range of debate questions in online political discussion creates a variety of possible scenarios that the model is faced with and thus makes data acquisition for model training difficult. In this work, we show how to leverage LLM-generated synthetic data to train and improve stance detection agents for online political discussions:(i) We generate synthetic data for specific debate questions by prompting a Mistral-7B model and show that fine-tuning with the generated synthetic data can substantially improve the performance of stance detection. (ii) We examine the impact of combining synthetic data with the most informative samples from an unlabelled dataset. First, we use the synthetic data to select the most informative samples, second, we combine both these samples and the synthetic data for fine-tuning. This approach reduces labelling effort and consistently surpasses the performance of the baseline model that is trained with fully labeled data. Overall, we show in comprehensive experiments that LLM-generated data greatly improves stance detection performance for online political discussions.

Significant pattern mining is a fundamental task in mining transactional data, requiring to identify patterns significantly associated with the value of a given feature, the target. In several applications, such as biomedicine, basket market analysis, and social networks, the goal is to discover patterns whose association with the target is defined with respect to an underlying population, or process, of which the dataset represents only a collection of observations, or samples. A natural way to capture the association of a pattern with the target is to consider its statistical significance, assessing its deviation from the (null) hypothesis of independence between the pattern and the target. While several algorithms have been proposed to find statistically significant patterns, it remains a computationally demanding task, and for complex patterns such as subgroups, no efficient solution exists. We present FSR, an efficient algorithm to identify statistically significant patterns with rigorous guarantees on the probability of false discoveries. FSR builds on a novel general framework for mining significant patterns that captures some of the most commonly considered patterns, including itemsets, sequential patterns, and subgroups. FSR uses a small number of resampled datasets, obtained by assigning i.i.d. labels to each transaction, to rigorously bound the supremum deviation of a quality statistic measuring the significance of patterns. FSR builds on novel tight bounds on the supremum deviation that require to mine a small number of resampled datasets, while providing a high effectiveness in discovering significant patterns. As a test case, we consider significant subgroup mining, and our evaluation on several real datasets shows that FSR is effective in discovering significant subgroups, while requiring a small number of resampled datasets.

Reward Machines provide an automata-inspired structure for specifying instructions, safety constraints, and other temporally extended reward-worthy behaviour. By exposing complex reward function structure, they enable counterfactual learning updates that have resulted in impressive sample efficiency gains. While Reward Machines have been employed in both tabular and deep RL settings, they have typically relied on a ground-truth interpretation of the domain-specific vocabulary that form the building blocks of the reward function. Such ground-truth interpretations can be elusive in many real-world settings, due in part to partial observability or noisy sensing. In this paper, we explore the use of Reward Machines for Deep RL in noisy and uncertain environments. We characterize this problem as a POMDP and propose a suite of RL algorithms that leverage task structure under uncertain interpretation of domain-specific vocabulary. Theoretical analysis exposes pitfalls in naive approaches to this problem, while experimental results show that our algorithms successfully leverage task structure to improve performance under noisy interpretations of the vocabulary. Our results provide a general framework for exploiting Reward Machines in partially observable environments.

Synthesizing speech across different accents while preserving the speaker identity is essential for various real-world customer applications. However, the individual and accurate modeling of accents and speakers in a text-to-speech (TTS) system is challenging due to the complexity of accent variations and the intrinsic entanglement between the accent and speaker identity. In this paper, we present a novel approach for multi-speaker multi-accent TTS synthesis, which aims to synthesize voices of multiple speakers, each with various accents. Our proposed approach employs a multi-scale accent modeling strategy to address accent variations at different levels. Specifically, we introduce both global (utterance level) and local (phoneme level) accent modeling, supervised by individual accent classifiers to capture the overall variation within accented utterances and fine-grained variations between phonemes, respectively. To control accents and speakers separately, speaker-independent accent modeling is necessary, which is achieved by adversarial training with speaker classifiers to disentangle speaker identity within the multi-scale accent modeling. Consequently, we obtain speaker-independent and accent-discriminative multi-scale embeddings as comprehensive accent features. Additionally, we propose a local accent prediction model that allows to generate accented speech directly from phoneme inputs. Extensive experiments are conducted on an accented English speech corpus. Both objective and subjective evaluations show the superiority of our proposed system compared to baselines systems. Detailed component analysis demonstrates the effectiveness of global and local accent modeling, and speaker disentanglement on multi-speaker multi-accent speech synthesis.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司