亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider Bayesian linear regression with sparsity-inducing prior and design efficient sampling algorithms leveraging posterior contraction properties. A quasi-likelihood with Gaussian spike-and-slab (that is favorable both statistically and computationally) is investigated and two algorithms based on Gibbs sampling and Stochastic Localization are analyzed, both under the same (quite natural) statistical assumptions that also enable valid inference on the sparse planted signal. The benefit of the Stochastic Localization sampler is particularly prominent for data matrix that is not well-designed.

相關內容

We investigate the complexity of several manipulation and control problems under numerous prevalent approval-based multiwinner voting rules. Particularly, the rules we study include approval voting (AV), satisfaction approval voting (SAV), net-satisfaction approval voting (NSAV), proportional approval voting (PAV), approval-based Chamberlin-Courant voting (ABCCV), minimax approval voting (MAV), etc. We show that these rules generally resist the strategic types scrutinized in the paper, with only a few exceptions. In addition, we also obtain many fixed-parameter tractability results for these problems with respect to several natural parameters, and derive polynomial-time algorithms for certain special cases.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.

Understanding variable dependence, particularly eliciting their statistical properties given a set of covariates, provides the mathematical foundation in practical operations management such as risk analysis and decision-making given observed circumstances. This article presents an estimation method for modeling the conditional joint distribution of bivariate outcomes based on the distribution regression and factorization methods. This method is considered semiparametric in that it allows for flexible modeling of both the marginal and joint distributions conditional on covariates without imposing global parametric assumptions across the entire distribution. In contrast to existing parametric approaches, our method can accommodate discrete, continuous, or mixed variables, and provides a simple yet effective way to capture distributional dependence structures between bivariate outcomes and covariates. Various simulation results confirm that our method can perform similarly or better in finite samples compared to the alternative methods. In an application to the study of a motor third-party liability insurance portfolio, the proposed method effectively estimates risk measures such as the conditional Value-at-Risk and Expected Shortfall. This result suggests that this semiparametric approach can serve as an alternative in insurance risk management.

With the rapid progress in Multi-Agent Path Finding (MAPF), researchers have studied how MAPF algorithms can be deployed to coordinate hundreds of robots in large automated warehouses. While most works try to improve the throughput of such warehouses by developing better MAPF algorithms, we focus on improving the throughput by optimizing the warehouse layout. We show that, even with state-of-the-art MAPF algorithms, commonly used human-designed layouts can lead to congestion for warehouses with large numbers of robots and thus have limited scalability. We extend existing automatic scenario generation methods to optimize warehouse layouts. Results show that our optimized warehouse layouts (1) reduce traffic congestion and thus improve throughput, (2) improve the scalability of the automated warehouses by doubling the number of robots in some cases, and (3) are capable of generating layouts with user-specified diversity measures. We include the source code at: //github.com/lunjohnzhang/warehouse_env_gen_public

Traumatic brain injury (TBI) can cause cognitive, communication, and psychological challenges that profoundly limit independence in everyday life. Conversational Agents (CAs) can provide individuals with TBI with cognitive and communication support, although little is known about how they make use of CAs to address injury-related needs. In this study, we gave nine adults with TBI an at-home CA for four weeks to investigate use patterns, challenges, and design requirements, focusing particularly on injury-related use. The findings revealed significant gaps between the current capabilities of CAs and accessibility challenges faced by TBI users. We also identified 14 TBI-related activities that participants engaged in with CAs. We categorized those activities into four groups: mental health, cognitive activities, healthcare and rehabilitation, and routine activities. Design implications focus on accessibility improvements and functional designs of CAs that can better support the day-to-day needs of people with TBI.

Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed.

Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to address this limitation is by learning global features (after the global pooling) to capture inter-instance relationships based on knowledge distillation, where the global features of the teacher are used to guide the learning of the global features of the student. Inspired by cross-modality learning, we extend this existing framework that only learns from global features by encouraging the global features and intermediate layer features to learn from each other. This leads to our novel self-supervised framework: cross-context learning between global and hypercolumn features (CGH), that enforces the consistency of instance relations between low- and high-level semantics. Specifically, we stack the intermediate feature maps to construct a hypercolumn representation so that we can measure instance relations using two contexts (hypercolumn and global feature) separately, and then use the relations of one context to guide the learning of the other. This cross-context learning allows the model to learn from the differences between the two contexts. The experimental results on linear classification and downstream tasks show that our method outperforms the state-of-the-art methods.

Speech emotion recognition is an important component of any human centered system. But speech characteristics produced and perceived by a person can be influenced by a multitude of reasons, both desirable such as emotion, and undesirable such as noise. To train robust emotion recognition models, we need a large, yet realistic data distribution, but emotion datasets are often small and hence are augmented with noise. Often noise augmentation makes one important assumption, that the prediction label should remain the same in presence or absence of noise, which is true for automatic speech recognition but not necessarily true for perception based tasks. In this paper we make three novel contributions. We validate through crowdsourcing that the presence of noise does change the annotation label and hence may alter the original ground truth label. We then show how disregarding this knowledge and assuming consistency in ground truth labels propagates to downstream evaluation of ML models, both for performance evaluation and robustness testing. We end the paper with a set of recommendations for noise augmentations in speech emotion recognition datasets.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司