亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perfect complementary sequence sets (PCSSs) are widely used in multi-carrier code-division multiple-access (MC-CDMA) communication system. However, the set size of a PCSS is upper bounded by the number of row sequences of each two-dimensional matrix in PCSS. Then quasi-complementary sequence set (QCSS) was proposed to support more users in MC-CDMA communications. For practical applications, it is desirable to construct an $(M,K,N,\vartheta_{max})$-QCSS with $M$ as large as possible and $\vartheta_{max}$ as small as possible, where $M$ is the number of matrices with $K$ rows and $N$ columns in the set and $\vartheta_{max}$ denotes its periodic tolerance. There exists a tradoff among these parameters and constructing QCSSs achieving or nearly achieving the known correlation lower bound has been an interesting research topic. Up to now, only a few constructions of asymptotically optimal or near-optimal periodic QCSSs were reported in the literature. In this paper, we construct five families of asymptotically optimal or near-optimal periodic QCSSs with large set sizes and low periodic tolerances. These families of QCSSs have set size $\Theta(q^2)$ or $\Theta(q^3)$ and flock size $\Theta(q)$, where $q$ is a power of a prime. To the best of our knowledge, only three known families of periodic QCSSs with set size $\Theta(q^2)$ and flock size $\Theta(q)$ were constructed and all other known periodic QCSSs have set sizes much smaller than $\Theta(q^2)$. Our new constructed periodic QCSSs with set size $\Theta(q^2)$ and flock size $\Theta(q)$ have better parameters than known ones. They have larger set sizes or lower periodic tolerances.The periodic QCSSs with set size $\Theta(q^3)$ and flock size $\Theta(q)$ constructed in this paper have the largest set size among all known families of asymptotically optimal or near-optimal periodic QCSSs.

相關內容

Guessing Codeword Decoding (GCD) is a recently proposed soft-input forward error correction decoder for arbitrary binary linear codes. Inspired by recent proposals that leverage binary linear codebook structure to reduce the number of queries made by Guessing Random Additive Noise Decoding (GRAND), for binary linear codes that include a full-message single parity-check (SPC) bit, we show that it is possible to reduce the number of queries made by GCD by a factor of up to 2 with the greatest guesswork reduction realized at lower SNRs, without impacting decoding precision. Codes without a full-message SPC can be modified to include one by changing a column of the generator matrix to obtain a decoding complexity advantage, and we demonstrate that this can often be done without losing decoding precision. To practically avail of the complexity advantage, a noise effect pattern generator capable of producing sequences for given Hamming weights, such as the landslide algorithm developed for ORBGRAND, is necessary.

The integration of Large Vision-Language Models (LVLMs) such as OpenAI's GPT-4 Vision into various sectors has marked a significant evolution in the field of artificial intelligence, particularly in the analysis and interpretation of visual data. This paper explores the practical application of GPT-4 Vision in the construction industry, focusing on its capabilities in monitoring and tracking the progress of construction projects. Utilizing high-resolution aerial imagery of construction sites, the study examines how GPT-4 Vision performs detailed scene analysis and tracks developmental changes over time. The findings demonstrate that while GPT-4 Vision is proficient in identifying construction stages, materials, and machinery, it faces challenges with precise object localization and segmentation. Despite these limitations, the potential for future advancements in this technology is considerable. This research not only highlights the current state and opportunities of using LVLMs in construction but also discusses future directions for enhancing the model's utility through domain-specific training and integration with other computer vision techniques and digital twins.

E-learning platforms that personalise content selection with AI are often criticised for lacking transparency and controllability. Researchers have therefore proposed solutions such as open learner models and letting learners select from ranked recommendations, which engage learners before or after the AI-supported selection process. However, little research has explored how learners - especially adolescents - could engage during such AI-supported decision-making. To address this open challenge, we iteratively designed and implemented a control mechanism that enables learners to steer the difficulty of AI-compiled exercise series before practice, while interactively analysing their control's impact in a 'what-if' visualisation. We evaluated our prototypes through four qualitative studies involving adolescents, teachers, EdTech professionals, and pedagogical experts, focusing on different types of visual explanations for recommendations. Our findings suggest that 'why' explanations do not always meet the explainability needs of young learners but can benefit teachers. Additionally, 'what-if' explanations were well-received for their potential to boost motivation. Overall, our work illustrates how combining learner control and visual explanations can be operationalised on e-learning platforms for adolescents. Future research can build upon our designs for 'why' and 'what-if' explanations and verify our preliminary findings.

The amount of image datasets collected for environmental monitoring purposes has increased in the past years as computer vision assisted methods have gained interest. Computer vision applications rely on high-quality datasets, making data curation important. However, data curation is often done ad-hoc and the methods used are rarely published. We present a method for curating large-scale image datasets of invertebrates that contain multiple images of the same taxa and/or specimens and have relatively uniform background in the images. Our approach is based on extracting feature embeddings with pretrained deep neural networks, and using these embeddings to find visually most distinct images by comparing their embeddings to the group prototype embedding. Also, we show that a simple area-based size comparison approach is able to find a lot of common erroneous images, such as images containing detached body parts and misclassified samples. In addition to the method, we propose using novel metrics for evaluating human-in-the-loop outlier detection methods. The implementations of the proposed curation methods, as well as a benchmark dataset containing annotated erroneous images, are publicly available in //github.com/mikkoim/taxonomist-studio.

The biological brain has inspired multiple advances in machine learning. However, most state-of-the-art models in computer vision do not operate like the human brain, simply because they are not capable of changing or improving their decisions/outputs based on a deeper analysis. The brain is recurrent, while these models are not. It is therefore relevant to explore what would be the impact of adding recurrent mechanisms to existing state-of-the-art architectures and to answer the question of whether recurrency can improve existing architectures. To this end, we build on a feed-forward segmentation model and explore multiple types of recurrency for image segmentation. We explore self-organizing, relational, and memory retrieval types of recurrency that minimize a specific energy function. In our experiments, we tested these models on artificial and medical imaging data, while analyzing the impact of high levels of noise and few-shot learning settings. Our results do not validate our initial hypothesis that recurrent models should perform better in these settings, suggesting that these recurrent architectures, by themselves, are not sufficient to surpass state-of-the-art feed-forward versions and that additional work needs to be done on the topic.

Software architecture optimization aims to enhance non-functional attributes like performance and reliability while meeting functional requirements. Multi-objective optimization employs metaheuristic search techniques, such as genetic algorithms, to explore feasible architectural changes and propose alternatives to designers. However, this resource-intensive process may not always align with practical constraints. This study investigates the impact of designer interactions on multi-objective software architecture optimization. Designers can intervene at intermediate points in the fully automated optimization process, making choices that guide exploration towards more desirable solutions. Through several controlled experiments as well as an initial user study (14 subjects), we compare this interactive approach with a fully automated optimization process, which serves as a baseline. The findings demonstrate that designer interactions lead to a more focused solution space, resulting in improved architectural quality. By directing the search towards regions of interest, the interaction uncovers architectures that remain unexplored in the fully automated process. In the user study, participants found that our interactive approach provides a better trade-off between sufficient exploration of the solution space and the required computation time.

Extremely large-scale multiple-input multiple-output (XL-MIMO) communications, enabled by numerous antenna elements integrated into large antenna surfaces, can provide increased effective degree of freedom (EDoF) to achieve high diversity gain. However, it remains an open problem that how the EDoF is influenced by the directional radiation pattern of antenna elements. In this work, empowered by the wavenumber-domain channel representation, we analyze the EDoF in a general case where the directivity of antennas, determined by the antenna structure and element spacing, is considered. Specifically, we first reveal the uneven distribution of directivity-aware wavenumber-domain coupling coefficients, i.e., channel gain towards different directions, in the isotropic Rayleigh fading channel. EDoF is then calculated based on such distribution of coupling coefficients. A numerical method is also provided to obtain coupling coefficients via electromagnetic full-wave simulations. Due to the influence of antenna directivity, how EDoF and ergodic channel capacity vary with the element spacing are explored via simulations for different antenna types.

Concurrent computation and communication (C3) is a pervasive paradigm in ML and other domains, making its performance optimization crucial. In this paper, we carefully characterize C3 in ML on GPUs, which are most widely deployed for ML training and inference. We observe that while C3 leads to performance uplifts, the uplifts are far lower than ideal speedups (serial computation and communication versus maximum of computation or communication; all times from isolated executions). C3 on average achieves only 21% of ideal speedup, this is due to known challenges of compute and memory interference between concurrent GPU kernels (that is, sharing of GPU's compute units, caches and HBM). To attain better performance for C3, first, we evaluate dual strategies of schedule prioritization and careful resource partitioning of compute units on GPUs to push performance attained with C3 (on average 42% of ideal speedup). We also provide heuristics that can guide a runtime while employing these strategies. To further enhance C3 performance, we propose to mitigate C3 interference by offloading communication tasks to the GPU's DMA engines. To this end, we build Concurrent Communication CoLlectives (ConCCL) proof-of-concepts that harness DMA engines for communication. We show how ConCCL considerably closes the gap between realized and ideal speedup for C3 (on average 72% of ideal speedup is realized, up to 1.67x speedup). Overall, our work makes a strong case for GPU DMA engine advancements to better support C3 on GPUs.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司