亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a simple, stochastic, a-posteriori, turbulence closure model based on a reduced subgrid scale term. This subgrid scale term is tailor-made to capture the statistics of a small set of spatially-integrate quantities of interest (QoIs), with only one unresolved scalar time series per QoI. In contrast to other data-driven surrogates the dimension of the "learning problem" is reduced from an evolving field to one scalar time series per QoI. We use an a-posteriori, nudging approach to find the distribution of the scalar series over time. This approach has the advantage of taking the interaction between the solver and the surrogate into account. A stochastic surrogate parametrization is obtained by random sampling from the found distribution for the scalar time series. Compared to an a-priori trained convolutional neural network, evaluating the new method is computationally much cheaper and gives similar long-term statistics.

相關內容

Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis (CCA) to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the spatio-temporal graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators, and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the spatio-temporal graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.

A recently proposed scheme utilizing local noise addition and matrix masking enables data collection while protecting individual privacy from all parties, including the central data manager. Statistical analysis of such privacy-preserved data is particularly challenging for nonlinear models like logistic regression. By leveraging a relationship between logistic regression and linear regression estimators, we propose the first valid statistical analysis method for logistic regression under this setting. Theoretical analysis of the proposed estimators confirmed its validity under an asymptotic framework with increasing noise magnitude to account for strict privacy requirements. Simulations and real data analyses demonstrate the superiority of the proposed estimators over naive logistic regression methods on privacy-preserved data sets.

We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to determine whether two collections of samples follow the same distribution. To address this, we propose a novel framework based on the kernel maximum mean discrepancy (MMD). Our approach seeks a subset of variables with a pre-specified size that maximizes the variance-regularized kernel MMD statistic. We focus on three commonly used types of kernels: linear, quadratic, and Gaussian. From a computational perspective, we derive mixed-integer programming formulations and propose exact and approximation algorithms with performance guarantees to solve these formulations. From a statistical viewpoint, we derive the rate of testing power of our framework under appropriate conditions. These results show that the sample size requirements for the three kernels depend crucially on the number of selected variables, rather than the data dimension. Experimental results on synthetic and real datasets demonstrate the superior performance of our method, compared to other variable selection frameworks, particularly in high-dimensional settings.

We propose a highly flexible distributional copula regression model for bivariate time-to-event data in the presence of right-censoring. The joint survival function of the response is constructed using parametric copulas, allowing for a separate specification of the dependence structure between the time-to-event outcome variables and their respective marginal survival distributions. The latter are specified using well-known parametric distributions such as the log-Normal, log-Logistic (proportional odds model), or Weibull (proportional hazards model) distributions. Hence, the marginal univariate event times can be specified as parametric (also known as Accelerated Failure Time, AFT) models. Embedding our model into the class of generalized additive models for location, scale and shape, possibly all distribution parameters of the joint survival function can depend on covariates. We develop a component-wise gradient-based boosting algorithm for estimation. This way, our approach is able to conduct data-driven variable selection. To the best of our knowledge, this is the first implementation of multivariate AFT models via distributional copula regression with automatic variable selection via statistical boosting. A special merit of our approach is that it works for high-dimensional (p>>n) settings. We illustrate the practical potential of our method on a high-dimensional application related to semi-competing risks responses in ovarian cancer. All of our methods are implemented in the open source statistical software R as add-on functions of the package gamboostLSS.

A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.

To understand a document with multiple events, event-event relation extraction (ERE) emerges as a crucial task, aiming to discern how natural events temporally or structurally associate with each other. To achieve this goal, our work addresses the problems of temporal event relation extraction (TRE) and subevent relation extraction (SRE). The latest methods for such problems have commonly built document-level event graphs for global reasoning across sentences. However, the edges between events are usually derived from external tools heuristically, which are not always reliable and may introduce noise. Moreover, they are not capable of preserving logical constraints among event relations, e.g., coreference constraint, symmetry constraint and conjunction constraint. These constraints guarantee coherence between different relation types,enabling the generation of a uniffed event evolution graph. In this work, we propose a novel method named LogicERE, which performs high-order event relation reasoning through modeling logic constraints. Speciffcally, different from conventional event graphs, we design a logic constraint induced graph (LCG) without any external tools. LCG involves event nodes where the interactions among them can model the coreference constraint, and event pairs nodes where the interactions among them can retain the symmetry constraint and conjunction constraint. Then we perform high-order reasoning on LCG with relational graph transformer to obtain enhanced event and event pair embeddings. Finally, we further incorporate logic constraint information via a joint logic learning module. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.

Machine unlearning without access to real data distribution is challenging. The existing method based on data-free distillation achieved unlearning by filtering out synthetic samples containing forgetting information but struggled to distill the retaining-related knowledge efficiently. In this work, we analyze that such a problem is due to over-filtering, which reduces the synthesized retaining-related information. We propose a novel method, Inhibited Synthetic PostFilter (ISPF), to tackle this challenge from two perspectives: First, the Inhibited Synthetic, by reducing the synthesized forgetting information; Second, the PostFilter, by fully utilizing the retaining-related information in synthesized samples. Experimental results demonstrate that the proposed ISPF effectively tackles the challenge and outperforms existing methods.

Adversarial attacks pose significant challenges in 3D object recognition, especially in scenarios involving multi-view analysis where objects can be observed from varying angles. This paper introduces View-Invariant Adversarial Perturbations (VIAP), a novel method for crafting robust adversarial examples that remain effective across multiple viewpoints. Unlike traditional methods, VIAP enables targeted attacks capable of manipulating recognition systems to classify objects as specific, pre-determined labels, all while using a single universal perturbation. Leveraging a dataset of 1,210 images across 121 diverse rendered 3D objects, we demonstrate the effectiveness of VIAP in both targeted and untargeted settings. Our untargeted perturbations successfully generate a singular adversarial noise robust to 3D transformations, while targeted attacks achieve exceptional results, with top-1 accuracies exceeding 95% across various epsilon values. These findings highlight VIAPs potential for real-world applications, such as testing the robustness of 3D recognition systems. The proposed method sets a new benchmark for view-invariant adversarial robustness, advancing the field of adversarial machine learning for 3D object recognition.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司