In this paper we investigate the existence, uniqueness and approximation of solutions of delay differential equations (DDEs) with the right-hand side functions $f=f(t,x,z)$ that are Lipschitz continuous with respect to $x$ but only H\"older continuous with respect to $(t,z)$. We give a construction of the randomized two-stage Runge-Kutta scheme for DDEs and investigate its upper error bound in the $L^p(\Omega)$-norm for $p\in [2,+\infty)$. Finally, we report on results of numerical experiments.
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parameter-free preconditioning techniques for the iterative solution of generalized multiterm Sylvester equations. They consist in constructing low Kronecker rank approximations of either the operator itself or its inverse. While the former requires solving standard Sylvester equations in each iteration, the latter only requires matrix-matrix multiplications, which are highly optimized on modern computer architectures. Moreover, low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse techniques, thereby enhancing their performance with little or no damage to their effectiveness.
Many applications rely on solving time-dependent partial differential equations (PDEs) that include second derivatives. Summation-by-parts (SBP) operators are crucial for developing stable, high-order accurate numerical methodologies for such problems. Conventionally, SBP operators are tailored to the assumption that polynomials accurately approximate the solution, and SBP operators should thus be exact for them. However, this assumption falls short for a range of problems for which other approximation spaces are better suited. We recently addressed this issue and developed a theory for first-derivative SBP operators based on general function spaces, coined function-space SBP (FSBP) operators. In this paper, we extend the innovation of FSBP operators to accommodate second derivatives. The developed second-derivative FSBP operators maintain the desired mimetic properties of existing polynomial SBP operators while allowing for greater flexibility by being applicable to a broader range of function spaces. We establish the existence of these operators and detail a straightforward methodology for constructing them. By exploring various function spaces, including trigonometric, exponential, and radial basis functions, we illustrate the versatility of our approach. The work presented here opens up possibilities for using second-derivative SBP operators based on suitable function spaces, paving the way for a wide range of applications in the future.
In this manuscript, we highlight a new phenomenon of complex algebraic singularity formation for solutions of a large class of genuinely nonlinear partial differential equations (PDEs). We start from a unique Cauchy datum, which is holomorphic ramified around the smooth locus and is sufficiently singular. Then, we expect the existence of a solution which should be holomorphic ramified around the singular locus S defined by the vanishing of the discriminant of an algebraic equation. Notice, moreover, that the monodromy of the Cauchy datum is Abelian, whereas one of the solutions is non-Abelian. Moreover, the singular locus S depends on the Cauchy datum in contrast to the Leray principle (stated for linear problems only). This phenomenon is due to the fact that the PDE is genuinely nonlinear and that the Cauchy datum is sufficiently singular. First, we investigate the case of the inviscid Burgers equation. Later, we state a general conjecture that describes the expected phenomenon. We view this Conjecture as a working programme allowing us to develop interesting new Mathematics. We also state another Conjecture 2, which is a particular case of the general Conjecture but keeps all the flavour and difficulty of the subject. Then, we propose a new algorithm with a map F such that a fixed point of F would give a solution to the problem associated with Conjecture 2. Then, we perform convincing, elaborate numerical tests that suggest that a Banach norm should exist for which the mapping F should be a contraction so that the solution (with the above specific algebraic structure) should be unique. This work is a continuation of Leichtnam (1993).
We consider arbitrary bounded discrete time series. From its statistical feature, without any use of the Fourier transform, we find an almost periodic function which suitably characterizes the corresponding time series.
This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.
In this article we extend and strengthen the seminal work by Niyogi, Smale, and Weinberger on the learning of the homotopy type from a sample of an underlying space. In their work, Niyogi, Smale, and Weinberger studied samples of $C^2$ manifolds with positive reach embedded in $\mathbb{R}^d$. We extend their results in the following ways: In the first part of our paper we consider both manifolds of positive reach -- a more general setting than $C^2$ manifolds -- and sets of positive reach embedded in $\mathbb{R}^d$. The sample $P$ of such a set $\mathcal{S}$ does not have to lie directly on it. Instead, we assume that the two one-sided Hausdorff distances -- $\varepsilon$ and $\delta$ -- between $P$ and $\mathcal{S}$ are bounded. We provide explicit bounds in terms of $\varepsilon$ and $ \delta$, that guarantee that there exists a parameter $r$ such that the union of balls of radius $r$ centred at the sample $P$ deformation-retracts to $\mathcal{S}$. In the second part of our paper we study homotopy learning in a significantly more general setting -- we investigate sets of positive reach and submanifolds of positive reach embedded in a \emph{Riemannian manifold with bounded sectional curvature}. To this end we introduce a new version of the reach in the Riemannian setting inspired by the cut locus. Yet again, we provide tight bounds on $\varepsilon$ and $\delta$ for both cases (submanifolds as well as sets of positive reach), exhibiting the tightness by an explicit construction.
In this paper we consider a superlinear one-dimensional elliptic boundary value problem that generalizes the one studied by Moore and Nehari in [43]. Specifically, we deal with piecewise-constant weight functions in front of the nonlinearity with an arbitrary number $\kappa\geq 1$ of vanishing regions. We study, from an analytic and numerical point of view, the number of positive solutions, depending on the value of a parameter $\lambda$ and on $\kappa$. Our main results are twofold. On the one hand, we study analytically the behavior of the solutions, as $\lambda\downarrow-\infty$, in the regions where the weight vanishes. Our result leads us to conjecture the existence of $2^{\kappa+1}-1$ solutions for sufficiently negative $\lambda$. On the other hand, we support such a conjecture with the results of numerical simulations which also shed light on the structure of the global bifurcation diagrams in $\lambda$ and the profiles of positive solutions. Finally, we give additional numerical results suggesting that the same high multiplicity result holds true for a much larger class of weights, also arbitrarily close to situations where there is uniqueness of positive solutions.
We consider a class of linear Vlasov partial differential equations driven by Wiener noise. Different types of stochastic perturbations are treated: additive noise, multiplicative It\^o and Stratonovich noise, and transport noise. We propose to employ splitting integrators for the temporal discretization of these stochastic partial differential equations. These integrators are designed in order to preserve qualitative properties of the exact solutions depending on the stochastic perturbation, such as preservation of norms or positivity of the solutions. We provide numerical experiments in order to illustrate the properties of the proposed integrators and investigate mean-square rates of convergence.
In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if "bad" elements (elements that violate the shape regularity or maximum angle condition) are covered virtually by "good" simplices. A numerical experiment confirms the theoretical result.
We present a new method to compute the solution to a nonlinear tensor differential equation with dynamical low-rank approximation. The idea of dynamical low-rank approximation is to project the differential equation onto the tangent space of a low-rank tensor manifold at each time. Traditionally, an orthogonal projection onto the tangent space is employed, which is challenging to compute for nonlinear differential equations. We introduce a novel interpolatory projection onto the tangent space that is easily computed for many nonlinear differential equations and satisfies the differential equation at a set of carefully selected indices. To select these indices, we devise a new algorithm based on the discrete empirical interpolation method (DEIM) that parameterizes any tensor train and its tangent space with tensor cross interpolants. We demonstrate the proposed method with applications to tensor differential equations arising from the discretization of partial differential equations.