Large Language Models (LLMs) excel in various tasks, but they rely on carefully crafted prompts that often demand substantial human effort. To automate this process, in this paper, we propose a novel framework for discrete prompt optimization, called EvoPrompt, which borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence. To enable EAs to work on discrete prompts, which are natural language expressions that need to be coherent and human-readable, we connect LLMs with EAs. This approach allows us to simultaneously leverage the powerful language processing capabilities of LLMs and the efficient optimization performance of EAs. Specifically, abstaining from any gradients or parameters, EvoPrompt starts from a population of prompts and iteratively generates new prompts with LLMs based on the evolutionary operators, improving the population based on the development set. We optimize prompts for both closed- and open-source LLMs including GPT-3.5 and Alpaca, on 9 datasets spanning language understanding and generation tasks. EvoPrompt significantly outperforms human-engineered prompts and existing methods for automatic prompt generation by up to 25% and 14% respectively. Furthermore, EvoPrompt demonstrates that connecting LLMs with EAs creates synergies, which could inspire further research on the combination of LLMs and conventional algorithms.
Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.
We study the data complexity of consistent query answering (CQA) on databases that may violate the primary key constraints. A repair is a maximal subset of the database satisfying the primary key constraints. For a Boolean query q, the problem CERTAINTY(q) takes a database as input, and asks whether or not each repair satisfies q. The computational complexity of CERTAINTY(q) has been established whenever q is a self-join-free Boolean conjunctive query, or a (not necessarily self-join-free) Boolean path query. In this paper, we take one more step towards a general classification for all Boolean conjunctive queries by considering the class of rooted tree queries. In particular, we show that for every rooted tree query q, CERTAINTY(q) is in FO, NL-hard $\cap$ LFP, or coNP-complete, and it is decidable (in polynomial time), given q, which of the three cases applies. We also extend our classification to larger classes of queries with simple primary keys. Our classification criteria rely on query homomorphisms and our polynomial-time fixpoint algorithm is based on a novel use of context-free grammar (CFG).
Generative models have demonstrated revolutionary success in various visual creation tasks, but in the meantime, they have been exposed to the threat of leaking private information of their training data. Several membership inference attacks (MIAs) have been proposed to exhibit the privacy vulnerability of generative models by classifying a query image as a training dataset member or nonmember. However, these attacks suffer from major limitations, such as requiring shadow models and white-box access, and either ignoring or only focusing on the unique property of diffusion models, which block their generalization to multiple generative models. In contrast, we propose the first generalized membership inference attack against a variety of generative models such as generative adversarial networks, [variational] autoencoders, implicit functions, and the emerging diffusion models. We leverage only generated distributions from target generators and auxiliary non-member datasets, therefore regarding target generators as black boxes and agnostic to their architectures or application scenarios. Experiments validate that all the generative models are vulnerable to our attack. For instance, our work achieves attack AUC $>0.99$ against DDPM, DDIM, and FastDPM trained on CIFAR-10 and CelebA. And the attack against VQGAN, LDM (for the text-conditional generation), and LIIF achieves AUC $>0.90.$ As a result, we appeal to our community to be aware of such privacy leakage risks when designing and publishing generative models.
Some of the most successful knowledge graph embedding (KGE) models for link prediction -- CP, RESCAL, TuckER, ComplEx -- can be interpreted as energy-based models. Under this perspective they are not amenable for exact maximum-likelihood estimation (MLE), sampling and struggle to integrate logical constraints. This work re-interprets the score functions of these KGEs as circuits -- constrained computational graphs allowing efficient marginalisation. Then, we design two recipes to obtain efficient generative circuit models by either restricting their activations to be non-negative or squaring their outputs. Our interpretation comes with little or no loss of performance for link prediction, while the circuits framework unlocks exact learning by MLE, efficient sampling of new triples, and guarantee that logical constraints are satisfied by design. Furthermore, our models scale more gracefully than the original KGEs on graphs with millions of entities.
Contrastive Learning (CL) has achieved impressive performance in self-supervised learning tasks, showing superior generalization ability. Inspired by the success, adopting CL into collaborative filtering (CF) is prevailing in semi-supervised top-K recommendations. The basic idea is to routinely conduct heuristic-based data augmentation and apply contrastive losses (e.g., InfoNCE) on the augmented views. Yet, some CF-tailored challenges make this adoption suboptimal, such as the issue of out-of-distribution, the risk of false negatives, and the nature of top-K evaluation. They necessitate the CL-based CF scheme to focus more on mining hard negatives and distinguishing false negatives from the vast unlabeled user-item interactions, for informative contrast signals. Worse still, there is limited understanding of contrastive loss in CF methods, especially w.r.t. its generalization ability. To bridge the gap, we delve into the reasons underpinning the success of contrastive loss in CF, and propose a principled Adversarial InfoNCE loss (AdvInfoNCE), which is a variant of InfoNCE, specially tailored for CF methods. AdvInfoNCE adaptively explores and assigns hardness to each negative instance in an adversarial fashion and further utilizes a fine-grained hardness-aware ranking criterion to empower the recommender's generalization ability. Training CF models with AdvInfoNCE, we validate the effectiveness of AdvInfoNCE on both synthetic and real-world benchmark datasets, thus showing its generalization ability to mitigate out-of-distribution problems. Given the theoretical guarantees and empirical superiority of AdvInfoNCE over most contrastive loss functions, we advocate its adoption as a standard loss in recommender systems, particularly for the out-of-distribution tasks. Codes are available at //github.com/LehengTHU/AdvInfoNCE.
Automatic Speech Recognition (ASR) has witnessed a profound research interest. Recent breakthroughs have given ASR systems different prospects such as faithfully transcribing spoken language, which is a pivotal advancement in building conversational agents. However, there is still an imminent challenge of accurately discerning context-dependent words and phrases. In this work, we propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing leveraging the power of deep learning models in accurately delivering spot-on transcriptions across a wide variety of vocabularies and speaking styles. Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models integrating both language and acoustic modeling for better accuracy. We infused our network with the use of a transformer-based model to properly rescore the word lattice achieving remarkable capabilities with a palpable reduction in Word Error Rate (WER). We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
Transformers have achieved remarkable success in various machine-learning tasks, prompting their widespread adoption. In this paper, we explore their application in the context of federated learning (FL), with a particular focus on heterogeneous scenarios where individual clients possess diverse local datasets. To meet the computational and communication demands of FL, we leverage pre-trained Transformers and use an efficient prompt-tuning strategy. Our strategy introduces the concept of learning both shared and group prompts, enabling the acquisition of universal knowledge and group-specific knowledge simultaneously. Additionally, a prompt selection module assigns personalized group prompts to each input, aligning the global model with the data distribution of each client. This approach allows us to train a single global model that can automatically adapt to various local client data distributions without requiring local fine-tuning. In this way, our proposed method effectively bridges the gap between global and personalized local models in Federated Learning and surpasses alternative approaches that lack the capability to adapt to previously unseen clients. The effectiveness of our approach is rigorously validated through extensive experimentation and ablation studies.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.