We consider a simulation optimization problem for a context-dependent decision-making, which aims to determine the top-m designs for all contexts. Under a Bayesian framework, we formulate the optimal dynamic sampling decision as a stochastic dynamic programming problem, and develop a sequential sampling policy to efficiently learn the performance of each design under each context. The asymptotically optimal sampling ratios are derived to attain the optimal large deviations rate of the worst-case of probability of false selection. The proposed sampling policy is proved to be consistent and its asymptotic sampling ratios are asymptotically optimal. Numerical experiments demonstrate that the proposed method improves the efficiency for selection of top-m context-dependent designs.
Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.
We use the lens of weak signal asymptotics to study a class of sequentially randomized experiments, including those that arise in solving multi-armed bandit problems. In an experiment with $n$ time steps, we let the mean reward gaps between actions scale to the order $1/\sqrt{n}$ so as to preserve the difficulty of the learning task as $n$ grows. In this regime, we show that the sample paths of a class of sequentially randomized experiments -- adapted to this scaling regime and with arm selection probabilities that vary continuously with state -- converge weakly to a diffusion limit, given as the solution to a stochastic differential equation. The diffusion limit enables us to derive refined, instance-specific characterization of stochastic dynamics, and to obtain several insights on the regret and belief evolution of a number of sequential experiments including Thompson sampling (but not UCB, which does not satisfy our continuity assumption). We show that all sequential experiments whose randomization probabilities have a Lipschitz-continuous dependence on the observed data suffer from sub-optimal regret performance when the reward gaps are relatively large. Conversely, we find that a version of Thompson sampling with an asymptotically uninformative prior variance achieves near-optimal instance-specific regret scaling, including with large reward gaps, but these good regret properties come at the cost of highly unstable posterior beliefs.
In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. Using a recently proposed multi-level Gaussian process emulator model, our stacking design provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of $\epsilon > 0$ is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multi-level Gaussian process emulator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of $\epsilon$. This result provides novel insights on conditions under which the proposed multi-fidelity approach improves upon a standard Gaussian process emulator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.
Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a \emph{surprising and counter-intuitive result}: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.
Reinforcement learning algorithms commonly seek to optimize policies for solving one particular task. How should we explore an unknown dynamical system such that the estimated model allows us to solve multiple downstream tasks in a zero-shot manner? In this paper, we address this challenge, by developing an algorithm -- OPAX -- for active exploration. OPAX uses well-calibrated probabilistic models to quantify the epistemic uncertainty about the unknown dynamics. It optimistically -- w.r.t. to plausible dynamics -- maximizes the information gain between the unknown dynamics and state observations. We show how the resulting optimization problem can be reduced to an optimal control problem that can be solved at each episode using standard approaches. We analyze our algorithm for general models, and, in the case of Gaussian process dynamics, we give a sample complexity bound and show that the epistemic uncertainty converges to zero. In our experiments, we compare OPAX with other heuristic active exploration approaches on several environments. Our experiments show that OPAX is not only theoretically sound but also performs well for zero-shot planning on novel downstream tasks.
In this paper, we study representation learning in partially observable Markov Decision Processes (POMDPs), where the agent learns a decoder function that maps a series of high-dimensional raw observations to a compact representation and uses it for more efficient exploration and planning. We focus our attention on the sub-classes of \textit{$\gamma$-observable} and \textit{decodable POMDPs}, for which it has been shown that statistically tractable learning is possible, but there has not been any computationally efficient algorithm. We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU) to perform representation learning and achieve efficient sample complexity, while only calling supervised learning computational oracles. We then show how to adapt this algorithm to also work in the broader class of $\gamma$-observable POMDPs.
We propose a method for learning dynamical systems from high-dimensional empirical data that combines variational autoencoders and (spatio-)temporal attention within a framework designed to enforce certain scientifically-motivated invariances. We focus on the setting in which data are available from multiple different instances of a system whose underlying dynamical model is entirely unknown at the outset. The approach rests on a separation into an instance-specific encoding (capturing initial conditions, constants etc.) and a latent dynamics model that is itself universal across all instances/realizations of the system. The separation is achieved in an automated, data-driven manner and only empirical data are required as inputs to the model. The approach allows effective inference of system behaviour at any continuous time but does not require an explicit neural ODE formulation, which makes it efficient and highly scalable. We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets. The latter investigate learning the dynamics of complex systems based on finite data and show that the proposed approach can outperform state-of-the-art neural-dynamical models. We study also more general inductive bias in the context of transfer to data obtained under entirely novel system interventions. Overall, our results provide a promising new framework for efficiently learning dynamical models from heterogeneous data with potential applications in a wide range of fields including physics, medicine, biology and engineering.
Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.