亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce CryptoBap, a platform to verify weak secrecy and authentication for the (ARMv8 and RISC-V) machine code of cryptographic protocols. We achieve this by first transpiling the binary of protocols into an intermediate representation and then performing a crypto-aware symbolic execution to automatically extract a model of the protocol that represents all its execution paths. Our symbolic execution resolves indirect jumps and supports bounded loops using the loop-summarization technique, which we fully automate. The extracted model is then translated into models amenable to automated verification via ProVerif and CryptoVerif using a third-party toolchain. We prove the soundness of the proposed approach and used CryptoBap to verify multiple case studies ranging from toy examples to real-world protocols, TinySSH, an implementation of SSH, and WireGuard, a modern VPN protocol.

相關內容

Despite efforts to align large language models (LLMs) with human values, widely-used LLMs such as GPT, Llama, Claude, and PaLM are susceptible to jailbreaking attacks, wherein an adversary fools a targeted LLM into generating objectionable content. To address this vulnerability, we propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on LLMs. Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs. SmoothLLM reduces the attack success rate on numerous popular LLMs to below one percentage point, avoids unnecessary conservatism, and admits provable guarantees on attack mitigation. Moreover, our defense uses exponentially fewer queries than existing attacks and is compatible with any LLM.

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

Recently, learned image compression has achieved remarkable performance. The entropy model, which estimates the distribution of the latent representation, plays a crucial role in boosting rate-distortion performance. However, most entropy models only capture correlations in one dimension, while the latent representation contain channel-wise, local spatial, and global spatial correlations. To tackle this issue, we propose the Multi-Reference Entropy Model (MEM) and the advanced version, MEM$^+$. These models capture the different types of correlations present in latent representation. Specifically, We first divide the latent representation into slices. When decoding the current slice, we use previously decoded slices as context and employ the attention map of the previously decoded slice to predict global correlations in the current slice. To capture local contexts, we introduce two enhanced checkerboard context capturing techniques that avoids performance degradation. Based on MEM and MEM$^+$, we propose image compression models MLIC and MLIC$^+$. Extensive experimental evaluations demonstrate that our MLIC and MLIC$^+$ models achieve state-of-the-art performance, reducing BD-rate by $8.05\%$ and $11.39\%$ on the Kodak dataset compared to VTM-17.0 when measured in PSNR. Our code will be available at //github.com/JiangWeibeta/MLIC.

Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information, and the types of reasoning are mainly divided into numerical reasoning and span extraction. Current numerical reasoning methods autoregressively decode program sequences, and each decoding step produces either an operator or an operand. However, the step-by-step decoding suffers from exposure bias, and the accuracy of program generation drops sharply as the decoding steps unfold due to error propagation. In this paper, we propose a non-autoregressive program generation framework, which independently generates complete program tuples containing both operators and operands, can address the error propagation issue while significantly boosting the speed of program generation. Experiments on the ConvFinQA and MultiHiertt datasets show that our non-autoregressive program generation method can bring about substantial improvements over the strong FinQANet (+5.06 Exe Acc and +4.80 Prog Acc points) and MT2Net (+7.97 EM and +6.38 F1 points) baselines, establishing the new state-of-the-art performance, while being much faster (21x) in program generation. Finally, with increasing numbers of numerical reasoning steps the performance drop of our method is significantly smaller than that of the baselines. Our code will be publicly available soon.

Precise arbitrary trajectory tracking for quadrotors is challenging due to unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To tackle these challenges, we present Deep Adaptive Trajectory Tracking (DATT), a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world. DATT builds on a novel feedforward-feedback-adaptive control structure trained in simulation using reinforcement learning. When deployed on real hardware, DATT is augmented with a disturbance estimator using L1 adaptive control in closed-loop, without any fine-tuning. DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields, including challenging scenarios where baselines completely fail. Moreover, DATT can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline

Distributed optimization methods with random communication skips are gaining increasing attention due to their proven benefits in accelerating communication complexity. Nevertheless, existing research mainly focuses on centralized communication protocols for strongly convex deterministic settings. In this work, we provide a decentralized optimization method called RandCom, which incorporates probabilistic local updates. We analyze the performance of RandCom in stochastic non-convex, convex, and strongly convex settings and demonstrate its ability to asymptotically reduce communication overhead by the probability of communication. Additionally, we prove that RandCom achieves linear speedup as the number of nodes increases. In stochastic strongly convex settings, we further prove that RandCom can achieve linear speedup with network-independent stepsizes. Moreover, we apply RandCom to federated learning and provide positive results concerning the potential for achieving linear speedup and the suitability of the probabilistic local update approach for non-convex settings.

Surrogate Optimization (SO) algorithms have shown promise for optimizing expensive black-box functions. However, their performance is heavily influenced by hyperparameters related to sampling and surrogate fitting, which poses a challenge to their widespread adoption. We investigate the impact of hyperparameters on various SO algorithms and propose a Hyperparameter Adaptive Search for SO (HASSO) approach. HASSO is not a hyperparameter tuning algorithm, but a generic self-adjusting SO algorithm that dynamically tunes its own hyperparameters while concurrently optimizing the primary objective function, without requiring additional evaluations. The aim is to improve the accessibility, effectiveness, and convergence speed of SO algorithms for practitioners. Our approach identifies and modifies the most influential hyperparameters specific to each problem and SO approach, reducing the need for manual tuning without significantly increasing the computational burden. Experimental results demonstrate the effectiveness of HASSO in enhancing the performance of various SO algorithms across different global optimization test problems.

Multi-modal trajectory forecasting methods commonly evaluate using single-agent metrics (marginal metrics), such as minimum Average Displacement Error (ADE) and Final Displacement Error (FDE), which fail to capture joint performance of multiple interacting agents. Only focusing on marginal metrics can lead to unnatural predictions, such as colliding trajectories or diverging trajectories for people who are clearly walking together as a group. Consequently, methods optimized for marginal metrics lead to overly-optimistic estimations of performance, which is detrimental to progress in trajectory forecasting research. In response to the limitations of marginal metrics, we present the first comprehensive evaluation of state-of-the-art (SOTA) trajectory forecasting methods with respect to multi-agent metrics (joint metrics): JADE, JFDE, and collision rate. We demonstrate the importance of joint metrics as opposed to marginal metrics with quantitative evidence and qualitative examples drawn from the ETH / UCY and Stanford Drone datasets. We introduce a new loss function incorporating joint metrics that, when applied to a SOTA trajectory forecasting method, achieves a 7\% improvement in JADE / JFDE on the ETH / UCY datasets with respect to the previous SOTA. Our results also indicate that optimizing for joint metrics naturally leads to an improvement in interaction modeling, as evidenced by a 16\% decrease in mean collision rate on the ETH / UCY datasets with respect to the previous SOTA. Code is available at \texttt{\hyperlink{//github.com/ericaweng/joint-metrics-matter}{github.com/ericaweng/joint-metrics-matter}}.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

北京阿比特科技有限公司