亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of jointly minimizing forms of two Boolean functions $f, g \colon \{0,1\}^J \to \{0,1\}$ such that $f + g \leq 1$ and so as to separate disjoint sets $A \cup B \subseteq \{0,1\}^J$ such that $f(A) = \{1\}$ and $g(B) = \{1\}$. We hypothesize that this problem is easier to solve or approximate than the well-understood problem of minimizing the form of one Boolean function $h: \{0,1\}^J \to \{0,1\}$ such that $h(A) = \{1\}$ and $h(B) = \{0\}$. For a large class of forms, including binary decision trees and ordered binary decision diagrams, we refute this hypothesis. For disjunctive normal forms, we show that the problem is at least as hard as MIN-SET-COVER. For all these forms, we establish that no $o(\ln (|A| + |B| -1))$-approximation algorithm exists unless P$=$NP.

相關內容

A burgeoning line of research has developed deep neural networks capable of approximating the solutions to high dimensional PDEs, opening related lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most theoretical analyses thus far have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as \emph{nonlinear elliptic variational PDEs}, whose solutions minimize an \emph{Euler-Lagrange} energy functional $\mathcal{E}(u) = \int_\Omega L(\nabla u) dx$. We show that if composing a function with Barron norm $b$ with $L$ produces a function of Barron norm at most $B_L b^p$, the solution to the PDE can be $\epsilon$-approximated in the $L^2$ sense by a function with Barron norm $O\left(\left(dB_L\right)^{p^{\log(1/\epsilon)}}\right)$. By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating $p, \epsilon, B_L$ as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs.

We present a novel sequential Monte Carlo approach to online smoothing of additive functionals in a very general class of path-space models. Hitherto, the solutions proposed in the literature suffer from either long-term numerical instability due to particle-path degeneracy or, in the case that degeneracy is remedied by particle approximation of the so-called backward kernel, high computational demands. In order to balance optimally computational speed against numerical stability, we propose to furnish a (fast) naive particle smoother, propagating recursively a sample of particles and associated smoothing statistics, with an adaptive backward-sampling-based updating rule which allows the number of (costly) backward samples to be kept at a minimum. This yields a new, function-specific additive smoothing algorithm, AdaSmooth, which is computationally fast, numerically stable and easy to implement. The algorithm is provided with rigorous theoretical results guaranteeing its consistency, asymptotic normality and long-term stability as well as numerical results demonstrating empirically the clear superiority of AdaSmooth to existing algorithms.

We consider the approximation of manifold-valued functions by embedding the manifold into a higher dimensional space, applying a vector-valued approximation operator and projecting the resulting vector back to the manifold. It is well known that the approximation error for manifold-valued functions is close to the approximation error for vector-valued functions. This is not true anymore if we consider the derivatives of such functions. In our paper we give pre-asymptotic error bounds for the approximation of the derivative of manifold-valued function. In particular, we provide explicit constants that depend on the reach of the embedded manifold.

Matching and pricing are two critical levers in two-sided marketplaces to connect demand and supply. The platform can produce more efficient matching and pricing decisions by batching the demand requests. We initiate the study of the two-stage stochastic matching problem, with or without pricing, to enable the platform to make improved decisions in a batch with an eye toward the imminent future demand requests. This problem is motivated in part by applications in online marketplaces such as ride hailing platforms. We design online competitive algorithms for vertex-weighted (or unweighted) two-stage stochastic matching for maximizing supply efficiency, and two-stage joint matching and pricing for maximizing market efficiency. In the former problem, using a randomized primal-dual algorithm applied to a family of ``balancing'' convex programs, we obtain the optimal $3/4$ competitive ratio against the optimum offline benchmark. Using a factor revealing program and connections to submodular optimization, we improve this ratio against the optimum online benchmark to $(1-1/e+1/e^2)\approx 0.767$ for the unweighted and $0.761$ for the weighted case. In the latter problem, we design optimal $1/2$-competitive joint pricing and matching algorithm by borrowing ideas from the ex-ante prophet inequality literature. We also show an improved $(1-1/e)$-competitive algorithm for the special case of demand efficiency objective using the correlation gap of submodular functions. Finally, we complement our theoretical study by using DiDi's ride-sharing dataset for Chengdu city and numerically evaluating the performance of our proposed algorithms in practical instances of this problem.

We study a submodular maximization problem motivated by applications in online retail. A platform displays a list of products to a user in response to a search query. The user inspects the first $k$ items in the list for a $k$ chosen at random from a given distribution, and decides whether to purchase an item from that set based on a choice model. The goal of the platform is to maximize the engagement of the shopper defined as the probability of purchase. This problem gives rise to a less-studied variation of submodular maximization in which we are asked to choose an $\textit{ordering}$ of a set of elements to maximize a linear combination of different submodular functions. First, using a reduction to maximizing submodular functions over matroids, we give an optimal $\left(1-1/e\right)$-approximation for this problem. We then consider a variant in which the platform cares not only about user engagement, but also about diversification across various groups of users, that is, guaranteeing a certain probability of purchase in each group. We characterize the polytope of feasible solutions and give a bi-criteria $((1-1/e)^2,(1-1/e)^2)$-approximation for this problem by rounding an approximate solution of a linear programming relaxation. For rounding, we rely on our reduction and the particular rounding techniques for matroid polytopes. For the special case in which underlying submodular functions are coverage functions -- which is practically relevant in online retail -- we propose an alternative LP relaxation and a simpler randomized rounding for the problem. This approach yields to an optimal bi-criteria $(1-1/e,1-1/e)$-approximation algorithm for the special case of the problem with coverage functions.

Motivated by applications in cloud computing spot markets and selling banner ads on popular websites, we study the online resource allocation problem with "costly buyback". To model this problem, we consider the classic edge-weighted fractional online matching problem with a tweak, where the decision maker can recall (i.e., buyback) any fraction of an offline resource that is pre-allocated to an earlier online vertex; however, by doing so not only the decision maker loses the previously allocated reward (which equates the edge-weight), it also has to pay a non-negative constant factor $f$ of this edge-weight as an extra penalty. Parameterizing the problem by the buyback factor $f$, our main result is obtaining optimal competitive algorithms for all possible values of $f$ through a novel primal-dual family of algorithms. We establish the optimality of our results by obtaining separate lower-bounds for each of small and large buyback factor regimes, and showing how our primal-dual algorithm exactly matches this lower-bound by appropriately tuning a parameter as a function of $f$. We further study lower and upper bounds on the competitive ratio in variants of this model, e.g., single-resource with different demand sizes, or matching with deterministic integral allocations. We show how algorithms in the our family of primal-dual algorithms can obtain the exact optimal competitive ratio in all of these variants -- which in turn demonstrates the power of our algorithmic framework for online resource allocations with costly buyback.

We show, that the Complex Step approximation to the Fr\'echet derivative of real matrix functions is applicable to the matrix sign, square root and polar mapping using iterative schemes. While this property was already discovered for the matrix sign using Newton's method, we extend the research to the family of Pad\'e iterations, that allows us to introduce iterative schemes for finding function and derivative values while approximately preserving automorphism group structure.

Submodular functions and variants, through their ability to characterize diversity and coverage, have emerged as a key tool for data selection and summarization. Many recent approaches to learn submodular functions suffer from limited expressiveness. In this work, we propose FLEXSUBNET, a family of flexible neural models for both monotone and non-monotone submodular functions. To fit a latent submodular function from (set, value) observations, FLEXSUBNET applies a concave function on modular functions in a recursive manner. We do not draw the concave function from a restricted family, but rather learn from data using a highly expressive neural network that implements a differentiable quadrature procedure. Such an expressive neural model for concave functions may be of independent interest. Next, we extend this setup to provide a novel characterization of monotone \alpha-submodular functions, a recently introduced notion of approximate submodular functions. We then use this characterization to design a novel neural model for such functions. Finally, we consider learning submodular set functions under distant supervision in the form of (perimeter-set, high-value-subset) pairs. This yields a novel subset selection method based on an order-invariant, yet greedy sampler built around the above neural set functions. Our experiments on synthetic and real data show that FLEXSUBNET outperforms several baselines.

The goal of cryptocurrencies is decentralization. In principle, all currencies have equal status. Unlike traditional stock markets, there is no default currency of denomination (fiat), thus the trading pairs can be set freely. However, it is impractical to set up a trading market between every two currencies. In order to control management costs and ensure sufficient liquidity, we must give priority to covering those large-volume trading pairs and ensure that all coins are reachable. We note that this is an optimization problem. Its particularity lies in: 1) the trading volume between most (>99.5%) possible trading pairs cannot be directly observed. 2) It satisfies the connectivity constraint, that is, all currencies are guaranteed to be tradable. To solve this problem, we use a two-stage process: 1) Fill in missing values based on a regularized, truncated eigenvalue decomposition, where the regularization term is used to control what extent missing values should be limited to zero. 2) Search for the optimal trading pairs, based on a branch and bound process, with heuristic search and pruning strategies. The experimental results show that: 1) If the number of denominated coins is not limited, we will get a more decentralized trading pair settings, which advocates the establishment of trading pairs directly between large currency pairs. 2) There is a certain room for optimization in all exchanges. The setting of inappropriate trading pairs is mainly caused by subjectively setting small coins to quote, or failing to track emerging big coins in time. 3) Too few trading pairs will lead to low coverage; too many trading pairs will need to be adjusted with markets frequently. Exchanges should consider striking an appropriate balance between them.

The question of answering queries over ML predictions has been gaining attention in the database community. This question is challenging because the cost of finding high quality answers corresponds to invoking an oracle such as a human expert or an expensive deep neural network model on every single item in the DB and then applying the query. We develop a novel unified framework for approximate query answering by leveraging a proxy to minimize the oracle usage of finding high quality answers for both Precision-Target (PT) and Recall-Target (RT) queries. Our framework uses a judicious combination of invoking the expensive oracle on data samples and applying the cheap proxy on the objects in the DB. It relies on two assumptions. Under the Proxy Quality assumption, proxy quality can be quantified in a probabilistic manner w.r.t. the oracle. This allows us to develop two algorithms: PQA that efficiently finds high quality answers with high probability and no oracle calls, and PQE, a heuristic extension that achieves empirically good performance with a small number of oracle calls. Alternatively, under the Core Set Closure assumption, we develop two algorithms: CSC that efficiently returns high quality answers with high probability and minimal oracle usage, and CSE, which extends it to more general settings. Our extensive experiments on five real-world datasets on both query types, PT and RT, demonstrate that our algorithms outperform the state-of-the-art and achieve high result quality with provable statistical guarantees.

北京阿比特科技有限公司