亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A countable structure is indivisible if for every coloring with finite range there is a monochromatic isomorphic subcopy of the structure. Each indivisible structure $\mathcal{S}$ naturally corresponds to an indivisibility problem $\mathsf{Ind}\ \mathcal{S}$, which outputs such a subcopy given a presentation and coloring. We investigate the Weihrauch complexity of the indivisibility problems for two structures: the rational numbers $\mathbb{Q}$ as a linear order, and the equivalence relation $\mathscr{E}$ with countably many equivalence classes each having countably many members. We separate the Weihrauch degrees of both $\mathsf{Ind}\ \mathbb{Q}$ and $\mathsf{Ind}\ \mathscr{E}$ from several benchmark problems, showing in particular that $\mathsf{C}_\mathbb{N} \vert_\mathrm{W} \mathsf{Ind}\ \mathbb{Q}$ and hence $\mathsf{Ind}\ \mathbb{Q}$ is strictly weaker than the problem of finding an interval in which some color is dense for a given coloring of $\mathbb{Q}$; and that the Weihrauch degree of $\mathsf{Ind}\ \mathscr{E}_k$ is strictly between those of $\mathsf{SRT}^2_k$ and $\mathsf{RT}^2_k$, where $\mathsf{Ind}\ \mathcal{S}_k$ is the restriction of $\mathsf{Ind}\ \mathcal{S}$ to $k$-colorings.

相關內容

We provide two families of algorithms to compute characteristic polynomials of endomorphisms and norms of isogenies of Drinfeld modules. Our algorithms work for Drinfeld modules of any rank, defined over any base curve. When the base curve is $\mathbb P^1_{\mathbb F_q}$, we do a thorough study of the complexity, demonstrating that our algorithms are, in many cases, the most asymptotically performant. The first family of algorithms relies on the correspondence between Drinfeld modules and Anderson motives, reducing the computation to linear algebra over a polynomial ring. The second family, available only for the Frobenius endomorphism, is based on a formula expressing the characteristic polynomial of the Frobenius as a reduced norm in a central simple algebra.

Faithfully summarizing the knowledge encoded by a deep neural network (DNN) into a few symbolic primitive patterns without losing much information represents a core challenge in explainable AI. To this end, Ren et al. (2023c) have derived a series of theorems to prove that the inference score of a DNN can be explained as a small set of interactions between input variables. However, the lack of generalization power makes it still hard to consider such interactions as faithful primitive patterns encoded by the DNN. Therefore, given different DNNs trained for the same task, we develop a new method to extract interactions that are shared by these DNNs. Experiments show that the extracted interactions can better reflect common knowledge shared by different DNNs.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

We determine the material parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure in this work. This is achieved through a least squares fitting of the total energy of the relaxed micromorphic homogeneous continuum to the total energy of the fully-resolved heterogeneous microstructure, governed by classical linear elasticity. The relaxed micromorphic model is a generalized continuum that utilizes the $\Curl$ of a micro-distortion field instead of its full gradient as in the classical micromorphic theory, leading to several advantages and differences. The most crucial advantage is that it operates between two well-defined scales. These scales are determined by linear elasticity with microscopic and macroscopic elasticity tensors, which respectively bound the stiffness of the relaxed micromorphic continuum from above and below. While the macroscopic elasticity tensor is established a priori through standard periodic first-order homogenization, the microscopic elasticity tensor remains to be determined. Additionally, the characteristic length parameter, associated with curvature measurement, controls the transition between the micro- and macro-scales. Both the microscopic elasticity tensor and the characteristic length parameter are here determined using a computational approach based on the least squares fitting of energies. This process involves the consideration of an adequate number of quadratic deformation modes and different specimen sizes. We conduct a comparative analysis between the least square fitting results of the relaxed micromorphic model, the fitting of a skew-symmetric micro-distortion field (Cosserat-micropolar model), and the fitting of the classical micromorphic model with two different formulations for the curvature...

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.

Statistical inference for high dimensional parameters (HDPs) can be based on their intrinsic correlation; that is, parameters that are close spatially or temporally tend to have more similar values. This is why nonlinear mixed-effects models (NMMs) are commonly (and appropriately) used for models with HDPs. Conversely, in many practical applications of NMM, the random effects (REs) are actually correlated HDPs that should remain constant during repeated sampling for frequentist inference. In both scenarios, the inference should be conditional on REs, instead of marginal inference by integrating out REs. In this paper, we first summarize recent theory of conditional inference for NMM, and then propose a bias-corrected RE predictor and confidence interval (CI). We also extend this methodology to accommodate the case where some REs are not associated with data. Simulation studies indicate that this new approach leads to substantial improvement in the conditional coverage rate of RE CIs, including CIs for smooth functions in generalized additive models, as compared to the existing method based on marginal inference.

The notion of an e-value has been recently proposed as a possible alternative to critical regions and p-values in statistical hypothesis testing. In this paper we consider testing the nonparametric hypothesis of symmetry, introduce analogues for e-values of three popular nonparametric tests, define an analogue for e-values of Pitman's asymptotic relative efficiency, and apply it to the three nonparametric tests. We discuss limitations of our simple definition of asymptotic relative efficiency and list directions of further research.

A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.

In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司