亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The objective of this article is to address the discretisation of fractured/faulted poromechanical models using 3D polyhedral meshes in order to cope with the geometrical complexity of faulted geological models. A polytopal scheme is proposed for contact-mechanics, based on a mixed formulation combining a fully discrete space and suitable reconstruction operators for the displacement field with a face-wise constant approximation of the Lagrange multiplier accounting for the surface tractions along the fracture/fault network. To ensure the inf--sup stability of the mixed formulation, a bubble-like degree of freedom is included in the discrete space of displacements (and taken into account in the reconstruction operators). It is proved that this fully discrete scheme for the displacement is equivalent to a low-order Virtual Element scheme, with a bubble enrichment of the VEM space. This $\mathbb{P}^1$-bubble VEM--$\mathbb{P}^0$ mixed discretization is combined with an Hybrid Finite Volume scheme for the Darcy flow. All together, the proposed approach is adapted to complex geometry accounting for network of planar faults/fractures including corners, tips and intersections; it leads to efficient semi-smooth Newton solvers for the contact-mechanics and preserve the dissipative properties of the fully coupled model. Our approach is investigated in terms of convergence and robustness on several 2D and 3D test cases using either analytical or numerical reference solutions both for the stand alone static contact mechanical model and the fully coupled poromechanical model.

相關內容

Linear structural vector autoregressive models can be identified statistically without imposing restrictions on the model if the shocks are mutually independent and at most one of them is Gaussian. We show that this result extends to structural threshold and smooth transition vector autoregressive models incorporating a time-varying impact matrix defined as a weighted sum of the impact matrices of the regimes. Our empirical application studies the effects of the climate policy uncertainty shock on the U.S. macroeconomy. In a structural logistic smooth transition vector autoregressive model consisting of two regimes, we find that a positive climate policy uncertainty shock decreases production in times of low economic policy uncertainty but slightly increases it in times of high economic policy uncertainty. The introduced methods are implemented to the accompanying R package sstvars.

We present the first formulation of the optimal polynomial approximation of the solution of linear non-autonomous systems of ODEs in the framework of the so-called $\star$-product. This product is the basis of new approaches for the solution of such ODEs, both in the analytical and the numerical sense. The paper shows how to formally state the problem and derives upper bounds for its error.

The aim of this article is to derive discontinuous finite elements vector spaces which can be put in a discrete de-Rham complex for which an harmonic gap property may be proven. First, discontinuous finite element spaces inspired by classical N{\'e}d{\'e}lec or Raviart-Thomas conforming space are considered, and we prove that by relaxing the normal or tangential constraint, discontinuous spaces ensuring the harmonic gap property can be built. Then the triangular case is addressed, for which we prove that such a property holds for the classical discontinuous finite element space for vectors. On Cartesian meshes, this result does not hold for the classical discontinuous finite element space for vectors. We then show how to use the de-Rham complex found for triangular meshes for enriching the finite element space on Cartesian meshes in order to recover a de-Rham complex, on which the same harmonic gap property is proven.

The Runge--Kutta discontinuous Galerkin (RKDG) method is a high-order technique for addressing hyperbolic conservation laws, which has been refined over recent decades and is effective in handling shock discontinuities. Despite its advancements, the RKDG method faces challenges, such as stringent constraints on the explicit time-step size and reduced robustness when dealing with strong discontinuities. On the other hand, the Gas-Kinetic Scheme (GKS) based on a high-order gas evolution model also delivers significant accuracy and stability in solving hyperbolic conservation laws through refined spatial and temporal discretizations. Unlike RKDG, GKS allows for more flexible CFL number constraints and features an advanced flow evolution mechanism at cell interfaces. Additionally, GKS' compact spatial reconstruction enhances the accuracy of the method and its ability to capture stable strong discontinuities effectively. In this study, we conduct a thorough examination of the RKDG method using various numerical fluxes and the GKS method employing both compact and non-compact spatial reconstructions. Both methods are applied under the framework of explicit time discretization and are tested solely in inviscid scenarios. We will present numerous numerical tests and provide a comparative analysis of the outcomes derived from these two computational approaches.

This paper analyses conforming and nonconforming virtual element formulations of arbitrary polynomial degrees on general polygonal meshes for the coupling of solid and fluid phases in deformable porous plates. The governing equations consist of one fourth-order equation for the transverse displacement of the middle surface coupled with a second-order equation for the pressure head relative to the solid with mixed boundary conditions. We propose novel enrichment operators that connect nonconforming virtual element spaces of general degree to continuous Sobolev spaces. These operators satisfy additional orthogonal and best-approximation properties (referred to as a conforming companion operator in the context of finite element methods), which play an important role in the nonconforming methods. This paper proves a priori error estimates in the best-approximation form, and derives residual--based reliable and efficient a posteriori error estimates in appropriate norms, and shows that these error bounds are robust with respect to the main model parameters. The computational examples illustrate the numerical behaviour of the suggested virtual element discretisations and confirm the theoretical findings on different polygonal meshes with mixed boundary conditions.

We present a novel family of particle discretisation methods for the nonlinear Landau collision operator. We exploit the metriplectic structure underlying the Vlasov-Maxwell-Landau system in order to obtain disretisation schemes that automatically preserve mass, momentum, and energy, warrant monotonic dissipation of entropy, and are thus guaranteed to respect the laws of thermodynamics. In contrast to recent works that used radial basis functions and similar methods for regularisation, here we use an auxiliary spline or finite element representation of the distribution function to this end. Discrete gradient methods are employed to guarantee the aforementioned properties in the time discrete domain as well.

The box method discrete fracture model (Box-DFM) is an important finite volume-based discrete fracture model (DFM) to simulate flows in fractured porous media. In this paper, we investigate a simple but effective extension of the box method discrete fracture model to include low-permeable barriers. The method remains identical to the traditional Box-DFM [41, 48] in the absence of barriers. The inclusion of barriers requires only minimal additional degrees of freedom to accommodate pressure discontinuities and necessitates minor modifications to the original coding framework of the Box-DFM. We use extensive numerical tests on published benchmark problems and comparison with existing finite volume DFMs to demonstrate the validity and performance of the method.

The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations, and for formulating invariant visual operations at higher levels. This paper defines and proves a set of joint covariance properties under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations, which make it possible to characterize how different types of image transformations interact with each other and the associated spatio-temporal receptive field responses. In this regard, we also extend the notion of scale-normalized derivatives to affine-normalized derivatives, to be able to obtain true affine-covariant properties of spatial derivatives, that are computed based on spatial smoothing with affine Gaussian kernels. The derived relations show how the parameters of the receptive fields need to be transformed, in order to match the output from spatio-temporal receptive fields under composed spatio-temporal image transformations. As a side effect, the presented proof for the joint covariance property over the integrated combination of the different geometric image transformations also provides specific proofs for the individual transformation properties, which have not previously been fully reported in the literature. The paper also presents an in-depth theoretical analysis of geometric interpretations of the derived covariance properties, as well as outlines a number of biological interpretations of these results.

All poetic forms come from somewhere. Prosodic templates can be copied for generations, altered by individuals, imported from foreign traditions, or fundamentally changed under the pressures of language evolution. Yet these relationships are notoriously difficult to trace across languages and times. This paper introduces an unsupervised method for detecting structural similarities in poems using local sequence alignment. The method relies on encoding poetic texts as strings of prosodic features using a four-letter alphabet; these sequences are then aligned to derive a distance measure based on weighted symbol (mis)matches. Local alignment allows poems to be clustered according to emergent properties of their underlying prosodic patterns. We evaluate method performance on a meter recognition tasks against strong baselines and show its potential for cross-lingual and historical research using three short case studies: 1) mutations in quantitative meter in classical Latin, 2) European diffusion of the Renaissance hendecasyllable, and 3) comparative alignment of modern meters in 18--19th century Czech, German and Russian. We release an implementation of the algorithm as a Python package with an open license.

This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem. The case study is a medical image reconstruction from few-view tomographic noisy data. The primary objective of the proposed optimization model is to achieve a good balance between denoising and the preservation of fine details and edges, overcoming the performance of the popular and largely used Total Variation (TV) regularization through the application of appropriate pixel-dependent weights. The proposed strategy leverages the role of gradient approximations for the computation of the space-variant TV weights. For this reason, a convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training. Additionally, the paper provides a theoretical analysis of the proposed model, showing the uniqueness of its solution, and illustrates a Chambolle-Pock algorithm tailored to address the specific problem at hand. This comprehensive framework integrates innovative regularization techniques with advanced neural network capabilities, demonstrating promising results in achieving high-quality reconstructions from low-sampled tomographic data.

北京阿比特科技有限公司