Rate-Splitting Multiple Access (RSMA) has recently found favour in the multi-antenna-aided wireless downlink, as a benefit of relaxing the accuracy of Channel State Information at the Transmitter (CSIT), while in achieving high spectral efficiency and providing security guarantees. These benefits are particularly important in high-velocity vehicular platoons since their high Doppler affects the estimation accuracy of the CSIT. To tackle this challenge, we propose an RSMA-based Internet of Vehicles (IoV) solution that jointly considers platoon control and FEderated Edge Learning (FEEL) in the downlink. Specifically, the proposed framework is designed for transmitting the unicast control messages within the IoV platoon, as well as for privacy-preserving FEEL-aided downlink Non-Orthogonal Unicasting and Multicasting (NOUM). Given this sophisticated framework, a multi-objective optimization problem is formulated to minimize both the latency of the FEEL downlink and the deviation of the vehicles within the platoon. To efficiently solve this problem, a Block Coordinate Descent (BCD) framework is developed for decoupling the main multi-objective problem into two sub-problems. Then, for solving these non-convex sub-problems, a Successive Convex Approximation (SCA) and Model Predictive Control (MPC) method is developed for solving the FEEL-based downlink problem and platoon control problem, respectively. Our simulation results show that the proposed RSMA-based IoV system outperforms the conventional systems.
Designing a real-time framework for the spatio-temporal action detection task is still a challenge. In this paper, we propose a novel real-time action detection framework, YOWOv2. In this new framework, YOWOv2 takes advantage of both the 3D backbone and 2D backbone for accurate action detection. A multi-level detection pipeline is designed to detect action instances of different scales. To achieve this goal, we carefully build a simple and efficient 2D backbone with a feature pyramid network to extract different levels of classification features and regression features. For the 3D backbone, we adopt the existing efficient 3D CNN to save development time. By combining 3D backbones and 2D backbones of different sizes, we design a YOWOv2 family including YOWOv2-Tiny, YOWOv2-Medium, and YOWOv2-Large. We also introduce the popular dynamic label assignment strategy and anchor-free mechanism to make the YOWOv2 consistent with the advanced model architecture design. With our improvement, YOWOv2 is significantly superior to YOWO, and can still keep real-time detection. Without any bells and whistles, YOWOv2 achieves 87.0 % frame mAP and 52.8 % video mAP with over 20 FPS on the UCF101-24. On the AVA, YOWOv2 achieves 21.7 % frame mAP with over 20 FPS. Our code is available on //github.com/yjh0410/YOWOv2.
Cooperative adaptive cruise control presents an opportunity to improve road transportation through increase in road capacity and reduction in energy use and accidents. Clever design of control algorithms and communication systems is required to ensure that the vehicle platoon is stable and meets desired safety requirements. In this paper, we propose a centralized model predictive controller for a heterogeneous platoon of vehicles to reach a desired platoon velocity and individual inter-vehicle distances with driver-selected headway time. In our approach, we allow for interruption from a human driver in the platoon that temporarily takes control of their vehicle with the assumption that the driver will, at minimum, obey legal velocity limits and the physical performance constraints of their vehicle. The finite horizon cost function of our proposed platoon controller is inspired from the infinite horizon design. To the best of our knowledge, this is the first platoon controller that integrates human-driven vehicles. We illustrate the performance of our proposed design with a numerical study.
Federated learning is an emerging machine learning paradigm that enables devices to train collaboratively without exchanging their local data. The clients participating in the training process are a random subset selected from the pool of clients. The above procedure is called client selection which is an important area in federated learning as it highly impacts the convergence rate, learning efficiency, and generalization. In this work, we introduce client filtering in federated learning (FilFL), a new approach to optimize client selection and training. FilFL first filters the active clients by choosing a subset of them that maximizes a specific objective function; then, a client selection method is applied to that subset. We provide a thorough analysis of its convergence in a heterogeneous setting. Empirical results demonstrate several benefits to our approach, including improved learning efficiency, accelerated convergence, $2$-$3\times$ faster, and higher test accuracy, around $2$-$10$ percentage points higher.
In online convex optimization, the player aims to minimize regret, or the difference between her loss and that of the best fixed decision in hindsight over the entire repeated game. Algorithms that minimize (standard) regret may converge to a fixed decision, which is undesirable in changing or dynamic environments. This motivates the stronger metrics of performance, notably adaptive and dynamic regret. Adaptive regret is the maximum regret over any continuous sub-interval in time. Dynamic regret is the difference between the total cost and that of the best sequence of decisions in hindsight. State-of-the-art performance in both adaptive and dynamic regret minimization suffers a computational penalty - typically on the order of a multiplicative factor that grows logarithmically in the number of game iterations. In this paper we show how to reduce this computational penalty to be doubly logarithmic in the number of game iterations, and retain near optimal adaptive and dynamic regret bounds.
We develop a mathematically rigorous framework for multilayer neural networks in the mean field regime. As the network's widths increase, the network's learning trajectory is shown to be well captured by a meaningful and dynamically nonlinear limit (the \textit{mean field} limit), which is characterized by a system of ODEs. Our framework applies to a broad range of network architectures, learning dynamics and network initializations. Central to the framework is the new idea of a \textit{neuronal embedding}, which comprises of a non-evolving probability space that allows to embed neural networks of arbitrary widths. Using our framework, we prove several properties of large-width multilayer neural networks. Firstly we show that independent and identically distributed initializations cause strong degeneracy effects on the network's learning trajectory when the network's depth is at least four. Secondly we obtain several global convergence guarantees for feedforward multilayer networks under a number of different setups. These include two-layer and three-layer networks with independent and identically distributed initializations, and multilayer networks of arbitrary depths with a special type of correlated initializations that is motivated by the new concept of \textit{bidirectional diversity}. Unlike previous works that rely on convexity, our results admit non-convex losses and hinge on a certain universal approximation property, which is a distinctive feature of infinite-width neural networks and is shown to hold throughout the training process. Aside from being the first known results for global convergence of multilayer networks in the mean field regime, they demonstrate flexibility of our framework and incorporate several new ideas and insights that depart from the conventional convex optimization wisdom.
Prediction interval (PI) is an effective tool to quantify uncertainty and usually serves as an input to downstream robust optimization. Traditional approaches focus on improving the quality of PI in the view of statistical scores and assume the improvement in quality will lead to a higher value in the power systems operation. However, such an assumption cannot always hold in practice. In this paper, we propose a value-oriented PI forecasting approach, which aims at reducing operational costs in downstream operations. For that, it is required to issue PIs with the guidance of operational costs in robust optimization, which is addressed within the contextual bandit framework here. Concretely, the agent is used to select the optimal quantile proportion, while the environment reveals the costs in operations as rewards to the agent. As such, the agent can learn the policy of quantile proportion selection for minimizing the operational cost. The numerical study regarding a two-timescale operation of a virtual power plant verifies the superiority of the proposed approach in terms of operational value. And it is especially evident in the context of extensive penetration of wind power.
Many software systems can be tuned for multiple objectives (e.g., faster runtime, less required memory, less network traffic or energy consumption, etc.). Optimizers built for different objectives suffer from "model disagreement"; i.e., they have different (or even opposite) insights and tactics on how to optimize a system. Model disagreement is rampant (at least for configuration problems). Yet prior to this paper, it has barely been explored. This paper shows that model disagreement can be mitigated via VEER, a one-dimensional approximation to the N-objective space. Since it is exploring a simpler goal space, VEER runs very fast (for eleven configuration problems). Even for our largest problem (with tens of thousands of possible configurations), VEER finds as good or better optimizations with zero model disagreements, three orders of magnitude faster (since its one-dimensional output no longer needs the sorting procedure). Based on the above, we recommend VEER as a very fast method to solve complex configuration problems, while at the same time avoiding model disagreement.
Autonomous vehicles and robots require increasingly more robustness and reliability to meet the demands of modern tasks. These requirements specially apply to cameras onboard such vehicles because they are the predominant sensors to acquire information about the environment and support actions. Cameras must maintain proper functionality and take automatic countermeasures if necessary. However, few works examine the practical use of a general condition monitoring approach for cameras and designs countermeasures in the context of an envisaged high-level application. We propose a generic and interpretable self-health-maintenance framework for cameras based on data- and physically-grounded models. To this end, we determine two reliable, real-time capable estimators for typical image effects of a camera in poor condition (blur, noise phenomena and most common combinations) by comparing traditional and retrained machine learning-based approaches in extensive experiments. Furthermore, we demonstrate on a real-world ground vehicle how one can adjust the camera parameters to achieve optimal whole-system capability based on experimental (non-linear and non-monotonic) input-output performance curves, using object detection, motion blur and sensor noise as examples. Our framework not only provides a practical ready-to-use solution to evaluate and maintain the health of cameras, but can also serve as a basis for extensions to tackle more sophisticated problems that combine additional data sources (e.g., sensor or environment parameters) empirically in order to attain fully reliable and robust machines.
Motivated by hiring pipelines, we study three selection and ordering problems in which applicants for a finite set of positions must be interviewed or made offers to. There is a finite time budget for interviewing or making offers, and a stochastic realization after each decision, leading to computationally-challenging problems. In the first problem, we study sequential interviewing and show that a computationally-tractable, non-adaptive policy that must make offers immediately after interviewing is approximately optimal, assuming offerees always accept their offers. In the second problem, we assume that applicants have already been interviewed but only accept offers with some probability; we develop a computationally-tractable policy that makes offers for the different positions in parallel, which can be used even if positions are heterogeneous and is approximately optimal relative to a policy that can make the same amount of offers not in parallel. In the third problem, we introduce a model where the hiring firm is tightly time constrained and must send all offers simultaneously in a single time step, with the possibility of hiring over capacity at a cost; we provide nearly-tight bounds for the performance of practically motivated value-ordered policies. All in all, our paper takes a unified approach to three different hiring problems, based on linear programming. Our results in the first two problems generalize and improve the guarantees from Purohit et al. (2019) that were between 1/8 and 1/2 to new guarantees that are at least 1-1/e. We also numerically compare three different settings of making offers to candidates (sequentially, in parallel, or simultaneously), providing insight on when a firm should favor each one.
In this paper, we review the undercutting attacks in the transaction-fee-based regime of proof-of-work (PoW) blockchains with the longest chain fork-choice rule. Next, we focus on the problem of fluctuations in mining revenue and the mining gap - i.e., a situation, in which the immediate reward from transaction fees does not cover miners' expenditures. To mitigate these issues, we propose a solution that splits transaction fees from a mined block into two parts - (1) an instant reward for the miner of a block and (2) a deposit sent to one or more fee-redistribution smart contracts ($\mathcal{FRSC}$s) that are part of the consensus protocol. At the same time, these redistribution smart contracts reward the miner of a block with a certain fraction of the accumulated funds of the incoming fees over a predefined time. This setting enables us to achieve several interesting properties that are beneficial for the incentive stability and security of the protocol. With our solution, the fraction of Default-Compliant miners who strictly do not execute undercutting attacks is lowered from the state-of-the-art result of 66% to 30%.