亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Abstract. Since the introduction of active discovery in Wi-Fi networks, users can be tracked via their probe requests. Although manufacturers typically try to conceal Media Access Control (MAC) addresses using MAC address randomisation, probe requests still contain Information Elements (IEs) that facilitate device identification. This paper introduces generic probe requests: By removing all unnecessary information from IEs, the requests become indistinguishable from one another, letting single devices disappear in the largest possible anonymity set. Conducting a comprehensive evaluation, we demonstrate that a large IE set contained within undirected probe requests does not necessarily imply fast connection establishment. Furthermore, we show that minimising IEs to nothing but Supported Rates would enable 82.55% of the devices to share the same anonymity set. Our contributions provide a significant advancement in the pursuit of robust privacy solutions for wireless networks, paving the way for more user anonymity and less surveillance in wireless communication ecosystems.

相關內容

Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains. A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy. A recent method of capturing transferability of GNNs is through the use of graphons, which are symmetric, measurable functions representing the limit of large dense graphs. In this work, we contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture. We prove its ability to approximate bandlimited graphon signals within a specified error tolerance using a minimal number of network weights. We then leverage this result, to establish the transferability of an explicit two-layer GNN over all sufficiently large graphs in a convergent sequence. Our work addresses transferability between both deterministic weighted graphs and simple random graphs and overcomes issues related to the curse of dimensionality that arise in other GNN results. The proposed WNN and GNN architectures offer practical solutions for handling graph data of varying sizes while maintaining performance guarantees without extensive retraining.

Large Language Models (LLMs) have significantly advanced user-bot interactions, enabling more complex and coherent dialogues. However, the prevalent text-only modality might not fully exploit the potential for effective user engagement. This paper explores the impact of multi-modal interactions, which incorporate images and audio alongside text, on user engagement in chatbot conversations. We conduct a comprehensive analysis using a diverse set of chatbots and real-user interaction data, employing metrics such as retention rate and conversation length to evaluate user engagement. Our findings reveal a significant enhancement in user engagement with multi-modal interactions compared to text-only dialogues. Notably, the incorporation of a third modality significantly amplifies engagement beyond the benefits observed with just two modalities. These results suggest that multi-modal interactions optimize cognitive processing and facilitate richer information comprehension. This study underscores the importance of multi-modality in chatbot design, offering valuable insights for creating more engaging and immersive AI communication experiences and informing the broader AI community about the benefits of multi-modal interactions in enhancing user engagement.

Real-time video analytics services aim to provide users with accurate recognition results timely. However, existing studies usually fall into the dilemma between reducing delay and improving accuracy. The edge computing scenario imposes strict transmission and computation resource constraints, making balancing these conflicting metrics under dynamic network conditions difficult. In this regard, we introduce the age of processed information (AoPI) concept, which quantifies the time elapsed since the generation of the latest accurately recognized frame. AoPI depicts the integrated impact of recognition accuracy, transmission, and computation efficiency. We derive closed-form expressions for AoPI under preemptive and non-preemptive computation scheduling policies w.r.t. the transmission/computation rate and recognition accuracy of video frames. We then investigate the joint problem of edge server selection, video configuration adaptation, and bandwidth/computation resource allocation to minimize the long-term average AoPI over all cameras. We propose an online method, i.e., Lyapunov-based block coordinate descent (LBCD), to solve the problem, which decouples the original problem into two subproblems to optimize the video configuration/resource allocation and edge server selection strategy separately. We prove that LBCD achieves asymptotically optimal performance. According to the testbed experiments and simulation results, LBCD reduces the average AoPI by up to 10.94X compared to state-of-the-art baselines.

Image editing aims to edit the given synthetic or real image to meet the specific requirements from users. It is widely studied in recent years as a promising and challenging field of Artificial Intelligence Generative Content (AIGC). Recent significant advancement in this field is based on the development of text-to-image (T2I) diffusion models, which generate images according to text prompts. These models demonstrate remarkable generative capabilities and have become widely used tools for image editing. T2I-based image editing methods significantly enhance editing performance and offer a user-friendly interface for modifying content guided by multimodal inputs. In this survey, we provide a comprehensive review of multimodal-guided image editing techniques that leverage T2I diffusion models. First, we define the scope of image editing from a holistic perspective and detail various control signals and editing scenarios. We then propose a unified framework to formalize the editing process, categorizing it into two primary algorithm families. This framework offers a design space for users to achieve specific goals. Subsequently, we present an in-depth analysis of each component within this framework, examining the characteristics and applicable scenarios of different combinations. Given that training-based methods learn to directly map the source image to target one under user guidance, we discuss them separately, and introduce injection schemes of source image in different scenarios. Additionally, we review the application of 2D techniques to video editing, highlighting solutions for inter-frame inconsistency. Finally, we discuss open challenges in the field and suggest potential future research directions. We keep tracing related works at //github.com/xinchengshuai/Awesome-Image-Editing.

This research looks at using AI/ML to achieve centimeter-level user positioning in 6G applications such as the Industrial Internet of Things (IIoT). Initial results show that our AI/ML-based method can estimate user positions with an accuracy of 17 cm in an indoor factory environment. In this proposal, we highlight our approaches and future directions.

Advancements in Artificial Intelligence, particularly with ChatGPT, have significantly impacted software development. Utilizing novel data from GitHub Innovation Graph, we hypothesize that ChatGPT enhances software production efficiency. Utilizing natural experiments where some governments banned ChatGPT, we employ Difference-in-Differences (DID), Synthetic Control (SC), and Synthetic Difference-in-Differences (SDID) methods to estimate its effects. Our findings indicate a significant positive impact on the number of git pushes, repositories, and unique developers per 100,000 people, particularly for high-level, general purpose, and shell scripting languages. These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司