亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within network data analysis, bipartite networks represent a particular type of network where relationships occur between two disjoint sets of nodes, formally called sending and receiving nodes. In this context, sending nodes may be organized into layers on the basis of some defined characteristics, resulting in a special case of multilayer bipartite network, where each layer includes a specific set of sending nodes. To perform a clustering of sending nodes in multi-layer bipartite network, we extend the Mixture of Latent Trait Analyzers (MLTA), also taking into account the influence of concomitant variables on clustering formation and the multi-layer structure of the data. To this aim, a multilevel approach offers a useful methodological tool to properly account for the hierarchical structure of the data and for the unobserved sources of heterogeneity at multiple levels. A simulation study is conducted to test the performance of the proposal in terms of parameters' and clustering recovery. Furthermore, the model is applied to the European Social Survey data (ESS) to i) perform a clustering of individuals (sending nodes) based on their digital skills (receiving nodes); ii) understand how socio-economic and demographic characteristics influence the individual digitalization level; iii) account for the multilevel structure of the data; iv) obtain a clustering of countries in terms of the base-line attitude to digital technologies of their residents.

相關內容

We develop an inferential toolkit for analyzing object-valued responses, which correspond to data situated in general metric spaces, paired with Euclidean predictors within the conformal framework. To this end we introduce conditional profile average transport costs, where we compare distance profiles that correspond to one-dimensional distributions of probability mass falling into balls of increasing radius through the optimal transport cost when moving from one distance profile to another. The average transport cost to transport a given distance profile to all others is crucial for statistical inference in metric spaces and underpins the proposed conditional profile scores. A key feature of the proposed approach is to utilize the distribution of conditional profile average transport costs as conformity score for general metric space-valued responses, which facilitates the construction of prediction sets by the split conformal algorithm. We derive the uniform convergence rate of the proposed conformity score estimators and establish asymptotic conditional validity for the prediction sets. The finite sample performance for synthetic data in various metric spaces demonstrates that the proposed conditional profile score outperforms existing methods in terms of both coverage level and size of the resulting prediction sets, even in the special case of scalar and thus Euclidean responses. We also demonstrate the practical utility of conditional profile scores for network data from New York taxi trips and for compositional data reflecting energy sourcing of U.S. states.

In backbone networks, it is fundamental to quickly protect traffic against any unexpected event, such as failures or congestions, which may impact Quality of Service (QoS). Standard solutions based on Segment Routing (SR), such as Topology-Independent Loop-Free Alternate (TI-LFA), are used in practice to handle failures, but no distributed solutions exist for distributed and tactical congestion mitigation. A promising approach leveraging SR has been recently proposed to quickly steer traffic away from congested links over alternative paths. As the pre-computation of alternative paths plays a paramount role to efficiently mitigating congestions, we investigate the associated path computation problem aiming at maximizing the amount of traffic that can be rerouted as well as the resilience against any 1-link failure. In particular, we focus on two variants of this problem. First, we maximize the residual flow after all possible failures. We show that the problem is NP-Hard, and we solve it via a Benders decomposition algorithm. Then, to provide a practical and scalable solution, we solve a relaxed variant problem, that maximizes, instead of flow, the number of surviving alternative paths after all possible failures. We provide a polynomial algorithm. Through numerical experiments, we compare the two variants and show that they allow to increase the amount of rerouted traffic and the resiliency of the network after any 1-link failure.

Traditional supervised learning aims to learn an unknown mapping by fitting a function to a set of input-output pairs with a fixed dimension. The fitted function is then defined on inputs of the same dimension. However, in many settings, the unknown mapping takes inputs in any dimension; examples include graph parameters defined on graphs of any size and physics quantities defined on an arbitrary number of particles. We leverage a newly-discovered phenomenon in algebraic topology, called representation stability, to define equivariant neural networks that can be trained with data in a fixed dimension and then extended to accept inputs in any dimension. Our approach is user-friendly, requiring only the network architecture and the groups for equivariance, and can be combined with any training procedure. We provide a simple open-source implementation of our methods and offer preliminary numerical experiments.

Physics-informed neural networks (PINN) is a extremely powerful paradigm used to solve equations encountered in scientific computing applications. An important part of the procedure is the minimization of the equation residual which includes, when the equation is time-dependent, a time sampling. It was argued in the literature that the sampling need not be uniform but should overweight initial time instants, but no rigorous explanation was provided for these choice. In this paper we take some prototypical examples and, under standard hypothesis concerning the neural network convergence, we show that the optimal time sampling follows a truncated exponential distribution. In particular we explain when the time sampling is best to be uniform and when it should not be. The findings are illustrated with numerical examples on linear equation, Burgers' equation and the Lorenz system.

Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.

This paper addresses the problem of deciding whether the dose response relationships between subgroups and the full population in a multi-regional trial are similar to each other. Similarity is measured in terms of the maximal deviation between the dose response curves. We consider a parametric framework and develop two powerful bootstrap tests for the similarity between the dose response curves of one subgroup and the full population, and for the similarity between the dose response curves of several subgroups and the full population. We prove the validity of the tests, investigate the finite sample properties by means of a simulation study and finally illustrate the methodology in a case study.

We propose a quantum soft-covering problem for a given general quantum channel and one of its output states, which consists in finding the minimum rank of an input state needed to approximate the given channel output. We then prove a one-shot quantum covering lemma in terms of smooth min-entropies by leveraging decoupling techniques from quantum Shannon theory. This covering result is shown to be equivalent to a coding theorem for rate distortion under a posterior (reverse) channel distortion criterion by two of the present authors. Both one-shot results directly yield corollaries about the i.i.d. asymptotics, in terms of the coherent information of the channel. The power of our quantum covering lemma is demonstrated by two additional applications: first, we formulate a quantum channel resolvability problem, and provide one-shot as well as asymptotic upper and lower bounds. Secondly, we provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels, in particular separating for the first time the simultaneous identification capacity from the unrestricted one, proving a long-standing conjecture of the last author.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

Twin nodes in a static network capture the idea of being substitutes for each other for maintaining paths of the same length anywhere in the network. In dynamic networks, we model twin nodes over a time-bounded interval, noted $(\Delta,d)$-twins, as follows. A periodic undirected time-varying graph $\mathcal G=(G_t)_{t\in\mathbb N}$ of period $p$ is an infinite sequence of static graphs where $G_t=G_{t+p}$ for every $t\in\mathbb N$. For $\Delta$ and $d$ two integers, two distinct nodes $u$ and $v$ in $\mathcal G$ are $(\Delta,d)$-twins if, starting at some instant, the outside neighbourhoods of $u$ and $v$ has non-empty intersection and differ by at most $d$ elements for $\Delta$ consecutive instants. In particular when $d=0$, $u$ and $v$ can act during the $\Delta$ instants as substitutes for each other in order to maintain journeys of the same length in time-varying graph $\mathcal G$. We propose a distributed deterministic algorithm enabling each node to enumerate its $(\Delta,d)$-twins in $2p$ rounds, using messages of size $O(\delta_\mathcal G\log n)$, where $n$ is the total number of nodes and $\delta_\mathcal G$ is the maximum degree of the graphs $G_t$'s. Moreover, using randomized techniques borrowed from distributed hash function sampling, we reduce the message size down to $O(\log n)$ w.h.p.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司