亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A brief overview of some computer algebra methods for computations with nested integrals is given. The focus is on nested integrals over integrands involving square roots. Rewrite rules for conversion to and from associated nested sums are discussed. We also include a short discussion comparing the holonomic systems approach and the differential field approach. For simplification to rational integrands, we give a comprehensive list of univariate rationalizing transformations, including transformations tuned to map the interval $[0,1]$ bijectively to itself.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We introduce a novel approach that combines tactile estimation and control for in-hand object manipulation. By integrating measurements from robot kinematics and an image-based tactile sensor, our framework estimates and tracks object pose while simultaneously generating motion plans to control the pose of a grasped object. This approach consists of a discrete pose estimator that uses the Viterbi decoding algorithm to find the most likely sequence of object poses in a coarsely discretized grid, and a continuous pose estimator-controller to refine the pose estimate and accurately manipulate the pose of the grasped object. Our method is tested on diverse objects and configurations, achieving desired manipulation objectives and outperforming single-shot methods in estimation accuracy. The proposed approach holds potential for tasks requiring precise manipulation in scenarios where visual perception is limited, laying the foundation for closed-loop behavior applications such as assembly and tool use. Please see supplementary videos for real-world demonstration at //sites.google.com/view/texterity.

As the deployment of deep learning models continues to expand across industries, the threat of malicious incursions aimed at gaining access to these deployed models is on the rise. Should an attacker gain access to a deployed model, whether through server breaches, insider attacks, or model inversion techniques, they can then construct white-box adversarial attacks to manipulate the model's classification outcomes, thereby posing significant risks to organizations that rely on these models for critical tasks. Model owners need mechanisms to protect themselves against such losses without the necessity of acquiring fresh training data - a process that typically demands substantial investments in time and capital. In this paper, we explore the feasibility of generating multiple versions of a model that possess different attack properties, without acquiring new training data or changing model architecture. The model owner can deploy one version at a time and replace a leaked version immediately with a new version. The newly deployed model version can resist adversarial attacks generated leveraging white-box access to one or all previously leaked versions. We show theoretically that this can be accomplished by incorporating parameterized hidden distributions into the model training data, forcing the model to learn task-irrelevant features uniquely defined by the chosen data. Additionally, optimal choices of hidden distributions can produce a sequence of model versions capable of resisting compound transferability attacks over time. Leveraging our analytical insights, we design and implement a practical model versioning method for DNN classifiers, which leads to significant robustness improvements over existing methods. We believe our work presents a promising direction for safeguarding DNN services beyond their initial deployment.

Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.

Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.

A common pipeline in functional data analysis is to first convert the discretely observed data to smooth functions, and then represent the functions by a finite-dimensional vector of coefficients summarizing the information. Existing methods for data smoothing and dimensional reduction mainly focus on learning the linear mappings from the data space to the representation space, however, learning only the linear representations may not be sufficient. In this study, we propose to learn the nonlinear representations of functional data using neural network autoencoders designed to process data in the form it is usually collected without the need of preprocessing. We design the encoder to employ a projection layer computing the weighted inner product of the functional data and functional weights over the observed timestamp, and the decoder to apply a recovery layer that maps the finite-dimensional vector extracted from the functional data back to functional space using a set of predetermined basis functions. The developed architecture can accommodate both regularly and irregularly spaced data. Our experiments demonstrate that the proposed method outperforms functional principal component analysis in terms of prediction and classification, and maintains superior smoothing ability and better computational efficiency in comparison to the conventional autoencoders under both linear and nonlinear settings.

Idempotence is the stability of image codec to re-compression. At the first glance, it is unrelated to perceptual image compression. However, we find that theoretically: 1) Conditional generative model-based perceptual codec satisfies idempotence; 2) Unconditional generative model with idempotence constraint is equivalent to conditional generative codec. Based on this newfound equivalence, we propose a new paradigm of perceptual image codec by inverting unconditional generative model with idempotence constraints. Our codec is theoretically equivalent to conditional generative codec, and it does not require training new models. Instead, it only requires a pre-trained mean-square-error codec and unconditional generative model. Empirically, we show that our proposed approach outperforms state-of-the-art methods such as HiFiC and ILLM, in terms of Fr\'echet Inception Distance (FID). The source code is provided in //github.com/tongdaxu/Idempotence-and-Perceptual-Image-Compression.

Many important computational structures involve an intricate interplay between algebraic features (given by operations on the underlying set) and relational features (taking account of notions such as order or distance). This paper investigates algebras over relational structures axiomatized by an infinitary Horn theory, which subsume, for example, partial algebras, various incarnations of ordered algebras, quantitative algebras introduced by Mardare, Panangaden, and Plotkin, and their recent extension to generalized metric spaces and lifted algebraic signatures by Mio, Sarkis, and Vignudelli. To this end, we develop the notion of clustered equation, which is inspired by Mardare et al.'s basic conditional equations in the theory of quantitative algebras, at the level of generality of arbitrary relational structures, and we prove it to be equivalent to an abstract categorical form of equation earlier introduced by Milius and Urbat. Our main results are a family of Birkhoff-type variety theorems (classifying the expressive power of clustered equations) and an exactness theorem (classifying abstract equations by a congruence property).

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司