The exponential growth of social media has profoundly transformed how information is created, disseminated, and absorbed, exceeding any precedent in the digital age. Regrettably, this explosion has also spawned a significant increase in the online abuse of memes. Evaluating the negative impact of memes is notably challenging, owing to their often subtle and implicit meanings, which are not directly conveyed through the overt text and imagery. In light of this, large multimodal models (LMMs) have emerged as a focal point of interest due to their remarkable capabilities in handling diverse multimodal tasks. In response to this development, our paper aims to thoroughly examine the capacity of various LMMs (e.g. GPT-4V) to discern and respond to the nuanced aspects of social abuse manifested in memes. We introduce the comprehensive meme benchmark, GOAT-Bench, comprising over 6K varied memes encapsulating themes such as implicit hate speech, sexism, and cyberbullying, etc. Utilizing GOAT-Bench, we delve into the ability of LMMs to accurately assess hatefulness, misogyny, offensiveness, sarcasm, and harmful content. Our extensive experiments across a range of LMMs reveal that current models still exhibit a deficiency in safety awareness, showing insensitivity to various forms of implicit abuse. We posit that this shortfall represents a critical impediment to the realization of safe artificial intelligence. The GOAT-Bench and accompanying resources are publicly accessible at //goatlmm.github.io/, contributing to ongoing research in this vital field.
We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.
The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.
Public discourse on critical issues such as climate change is progressively shifting to social media platforms that prioritize short-form video content. Content creators acting on those platforms play a pivotal role in shaping the discourse, yet the dynamics of communication and audience reactions across platforms remain underexplored. To improve our understanding of this transition, we studied the video content produced by 21 prominent YouTube creators who have expanded their influence to TikTok as information disseminators. Using dictionary-based tools and BERT-based embeddings, we analyzed the transcripts of nearly 7k climate-related videos across both platforms and the 574k comments they received. We found that, when publishing on TikTok, creators use a more emotionally resonant, self-referential, and action-oriented language compared to YouTube. We also observed a strong semantic alignment between videos and comments, with creators who excel at diversifying their TikTok content from YouTube typically receiving responses that more closely align with their produced content. This suggests that tailored communication strategies hold greater promise in directing public discussion toward desired topics, which bears implications for the design of effective climate communication campaigns.
Navigating certain communication situations can be challenging due to individuals' lack of skills and the interference of strong emotions. However, effective learning opportunities are rarely accessible. In this work, we conduct a human-centered study that uses language models to simulate bespoke communication training and provide just-in-time feedback to support the practice and learning of interpersonal effectiveness skills. We apply the interpersonal effectiveness framework from Dialectical Behavioral Therapy (DBT), DEAR MAN, which focuses on both conversational and emotional skills. We present IMBUE, an interactive training system that provides feedback 25% more similar to experts' feedback, compared to that generated by GPT-4. IMBUE is the first to focus on communication skills and emotion management simultaneously, incorporate experts' domain knowledge in providing feedback, and be grounded in psychology theory. Through a randomized trial of 86 participants, we find that IMBUE's simulation-only variant significantly improves participants' self-efficacy (up to 17%) and reduces negative emotions (up to 25%). With IMBUE's additional just-in-time feedback, participants demonstrate 17% improvement in skill mastery, along with greater enhancements in self-efficacy (27% more) and reduction of negative emotions (16% more) compared to simulation-only. The improvement in skill mastery is the only measure that is transferred to new and more difficult situations; situation specific training is necessary for improving self-efficacy and emotion reduction.
Coding theory revolves around the incorporation of redundancy into transmitted symbols, computation tasks, and stored data to guard against adversarial manipulation. However, error correction in coding theory is contingent upon a strict trust assumption. In the context of computation and storage, it is required that honest nodes outnumber adversarial ones by a certain margin. However, in several emerging real-world cases, particularly, in decentralized blockchain-oriented applications, such assumptions are often unrealistic. Consequently, despite the important role of coding in addressing significant challenges within decentralized systems, its applications become constrained. Still, in decentralized platforms, a distinctive characteristic emerges, offering new avenues for secure coding beyond the constraints of conventional methods. In these scenarios, the adversary benefits when the legitimate decoder recovers the data, and preferably with a high estimation error. This incentive motivates them to act rationally, trying to maximize their gains. In this paper, we propose a game theoretic formulation for coding, called the game of coding, that captures this unique dynamic where each of the adversary and the data collector (decoder) have a utility function to optimize. The utility functions reflect the fact that both the data collector and the adversary are interested in increasing the chance of data being recoverable by the data collector. Moreover, the utility functions express the interest of the data collector to estimate the input with lower estimation error, but the opposite interest of the adversary. As a first, still highly non-trivial step, we characterize the equilibrium of the game for the repetition code with a repetition factor of 2, for a wide class of utility functions with minimal assumptions.
While LLMs can provide reasoned explanations along with their answers, the nature and quality of those explanations are still poorly understood. In response, our goal is to define a detailed way of characterizing the explanation capabilities of modern models and to create a nuanced, interpretable explanation evaluation tool that can generate such characterizations automatically, without relying on expensive API calls or human annotations. Our approach is to (a) define the new task of explanation critiquing - identifying and categorizing any main flaw in an explanation and providing suggestions to address the flaw, (b) create a sizeable, human-verified dataset for this task, and (c) train an open-source, automatic critique model (called Digital Socrates) using this data. Through quantitative and qualitative analysis, we demonstrate how Digital Socrates is useful for revealing insights about student models by examining their reasoning chains, and how it can provide high-quality, nuanced, automatic evaluation of those model explanations for the first time. Digital Socrates thus fills an important gap in evaluation tools for understanding and improving the explanation behavior of models.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.