In this work, we present the convergence analysis of one-point large deviations rate functions (LDRFs) of the spatial finite difference method (FDM) for stochastic wave equations with small noise, which is essentially about the asymptotical limit of minimization problems and not a trivial task for the nonlinear cases. In order to overcome the difficulty that objective functions for the original equation and the spatial FDM have different effective domains, we propose a new technical route for analyzing the pointwise convergence of the one-point LDRFs of the spatial FDM, based on the $\Gamma$-convergence of objective functions. Based on the new technical route, the intractable convergence analysis of one-point LDRFs boils down to the qualitative analysis of skeleton equations of the original equation and its numerical discretizations.
We study here the approximation by a finite-volume scheme of a heat equation forced by a Lipschitz continuous multiplicative noise in the sense of It\^o. More precisely, we consider a discretization which is semi-implicit in time and a two-point flux approximation scheme (TPFA) in space. We adapt the method based on the theorem of Prokhorov to obtain a convergence in distribution result, then Skorokhod's representation theorem yields the convergence of the scheme towards a martingale solution and the Gy\"{o}ngy-Krylov argument is used to prove convergence in probability of the scheme towards the unique variational solution of our parabolic problem.
Neyman (1923/1990) introduced the randomization model, which contains the notation of potential outcomes to define causal effects and a framework for large-sample inference based on the design of the experiment. However, the existing theory for this framework is far from complete especially when the number of treatment levels diverges and the group sizes vary a lot across treatment levels. We provide a unified discussion of statistical inference under the randomization model with general group sizes across treatment levels. We formulate the estimator in terms of a linear permutational statistic and use results based on Stein's method to derive various Berry--Esseen bounds on the linear and quadratic functions of the estimator. These new Berry--Esseen bounds serve as basis for design-based causal inference with possibly diverging treatment levels and diverging dimension of causal effects. We also fill an important gap by proposing novel variance estimators for experiments with possibly many treatment levels without replications. Equipped with the newly developed results, design-based causal inference in general settings becomes more convenient with stronger theoretical guarantees.
Non-convex sampling is a key challenge in machine learning, central to non-convex optimization in deep learning as well as to approximate probabilistic inference. Despite its significance, theoretically there remain many important challenges: Existing guarantees (1) typically only hold for the averaged iterates rather than the more desirable last iterates, (2) lack convergence metrics that capture the scales of the variables such as Wasserstein distances, and (3) mainly apply to elementary schemes such as stochastic gradient Langevin dynamics. In this paper, we develop a new framework that lifts the above issues by harnessing several tools from the theory of dynamical systems. Our key result is that, for a large class of state-of-the-art sampling schemes, their last-iterate convergence in Wasserstein distances can be reduced to the study of their continuous-time counterparts, which is much better understood. Coupled with standard assumptions of MCMC sampling, our theory immediately yields the last-iterate Wasserstein convergence of many advanced sampling schemes such as proximal, randomized mid-point, and Runge-Kutta integrators. Beyond existing methods, our framework also motivates more efficient schemes that enjoy the same rigorous guarantees.
The utilization of renewable energy technologies, particularly hydrogen, has seen a boom in interest and has spread throughout the world. Ethanol steam reformation is one of the primary methods capable of producing hydrogen efficiently and reliably. This paper provides an in-depth study of the reformulated system both theoretically and numerically, as well as a plan to explore the possibility of converting the system into its conservation form. Lastly, we offer an overview of several numerical approaches for solving the general first-order quasi-linear hyperbolic equation to the particular model for ethanol steam reforming (ESR). We conclude by presenting some results that would enable the usage of these ODE/PDE solvers to be used in non-linear model predictive control (NMPC) algorithms and discuss the limitations of our approach and directions for future work.
We develop a hybrid spatial discretization for the wave equation in second order form, based on high-order accurate finite difference methods and discontinuous Galerkin methods. The hybridization combines computational efficiency of finite difference methods on Cartesian grids and geometrical flexibility of discontinuous Galerkin methods on unstructured meshes. The two spatial discretizations are coupled by a penalty technique at the interface such that the overall semidiscretization satisfies a discrete energy estimate to ensure stability. In addition, optimal convergence is obtained in the sense that when combining a fourth order finite difference method with a discontinuous Galerkin method using third order local polynomials, the overall convergence rate is fourth order. Furthermore, we use a novel approach to derive an error estimate for the semidiscretization by combining the energy method and the normal mode analysis for a corresponding one dimensional model problem. The stability and accuracy analysis are verified in numerical experiments.
In this paper, we consider recent progress in estimating the average treatment effect when extreme inverse probability weights are present and focus on methods that account for a possible violation of the positivity assumption. These methods aim at estimating the treatment effect on the subpopulation of patients for whom there is a clinical equipoise. We propose a systematic approach to determine their related causal estimands and develop new insights into the properties of the weights targeting such a subpopulation. Then, we examine the roles of overlap weights, matching weights, Shannon's entropy weights, and beta weights. This helps us characterize and compare their underlying estimators, analytically and via simulations, in terms of the accuracy, precision, and root mean squared error. Moreover, we study the asymptotic behaviors of their augmented estimators (that mimic doubly robust estimators), which lead to improved estimations when either the propensity or the regression models are correctly specified. Based on the analytical and simulation results, we conclude that overall overlap weights are preferable to matching weights, especially when there is moderate or extreme violations of the positivity assumption. Finally, we illustrate the methods using a real data example marked by extreme inverse probability weights.
Deep learning (DL) is becoming indispensable to contemporary stochastic analysis and finance; nevertheless, it is still unclear how to design a principled DL framework for approximating infinite-dimensional causal operators. This paper proposes a "geometry-aware" solution to this open problem by introducing a DL model-design framework that takes a suitable infinite-dimensional linear metric spaces as inputs and returns a universal sequential DL models adapted to these linear geometries: we call these models Causal Neural Operators (CNO). Our main result states that the models produced by our framework can uniformly approximate on compact sets and across arbitrarily finite-time horizons H\"older or smooth trace class operators which causally map sequences between given linear metric spaces. Consequentially, we deduce that a single CNO can efficiently approximate the solution operator to a broad range of SDEs, thus allowing us to simultaneously approximate predictions from families of SDE models, which is vital to computational robust finance. We deduce that the CNO can approximate the solution operator to most stochastic filtering problems, implying that a single CNO can simultaneously filter a family of partially observed stochastic volatility models.
We study a class of nonlinear eigenvalue problems of Schr\"{o}dinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined $hp$ discontinuous Galerkin (dG) method. We show that, for weighted analytic potentials and for up-to-quartic polynomial nonlinearities, the eigenfunctions belong to analytic-type non homogeneous weighted Sobolev spaces. We also prove quasi optimal a priori estimates on the error of the dG finite element method; when using an isotropically refined $hp$ space the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. We conclude with a series of numerical tests to validate the theoretical results.
We investigate the approximation formulas that were proposed by Tanaka & Sugihara (2019), in weighted Hardy spaces, which are analytic function spaces with certain asymptotic decay. Under the criterion of minimum worst error of $n$-point approximation formulas, we demonstrate that the formulas are nearly optimal. We also obtain the upper bounds of the approximation errors that coincide with the existing heuristic bounds in asymptotic order by duality theorem for the minimization problem of potential energy.
We study the rank of sub-matrices arising out of kernel functions, $F(\pmb{x},\pmb{y}): \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$, where $\pmb{x},\pmb{y} \in \mathbb{R}^d$ with $F(\pmb{x},\pmb{y})$ is smooth everywhere except along the line $\pmb{x}=\pmb{y}$. Such kernel functions are frequently encountered in a wide range of applications such as $N$ body problems, Green's functions, integral equations, geostatistics, kriging, Gaussian processes, etc. One of the challenges in dealing with these kernel functions is that the corresponding matrix associated with these kernels is large and dense and thereby, the computational cost of matrix operations is high. In this article, we prove new theorems bounding the numerical rank of sub-matrices arising out of these kernel functions. Under reasonably mild assumptions, we prove that the rank of certain sub-matrices is rank-deficient in finite precision. This rank depends on the dimension of the ambient space and also on the type of interaction between the hyper-cubes containing the corresponding set of particles. This rank structure can be leveraged to reduce the computational cost of certain matrix operations such as matrix-vector products, solving linear systems, etc. We also present numerical results on the growth of rank of certain sub-matrices in $1$D, $2$D, $3$D and $4$D, which, not surprisingly, agrees with the theoretical results.