亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The AMIDER, Advanced Multidisciplinary Integrated-Database for Exploring new Research, is a newly developed research data catalog to demonstrate an advanced database application. AMIDER is characterized as a multidisciplinary database equipped with a user-friendly web application. Its catalog view displays diverse research data at once beyond any limitation of each individual discipline. Some useful functions, such as a selectable data download, data format conversion, and display of data visual information, are also implemented. Further advanced functions, such as visualization of dataset mutual relationship, are also implemented as a preliminary trial. These characteristics and functions are expected to enhance the accessibility to individual research data, even from non-expertized users, and be helpful for collaborations among diverse scientific fields beyond individual disciplines. Multidisciplinary data management is also one of AMIDER's uniqueness, where various metadata schemas can be mapped to a uniform metadata table, and standardized and self-describing data formats are adopted. AMIDER website (//amider.rois.ac.jp/) had been launched in April 2024. As of July 2024, over 15,000 metadata in various research fields of polar science have been registered in the database, and approximately 500 visitors are viewing the website every day on average. Expansion of the database to further multidisciplinary scientific fields, not only polar science, is planned, and advanced attempts, such as applying Natural Language Processing (NLP) to metadata, have also been considered.

相關內容

Recently, with the development of Neural Radiance Fields and Gaussian Splatting, 3D reconstruction techniques have achieved remarkably high fidelity. However, the latent representations learnt by these methods are highly entangled and lack interpretability. In this paper, we propose a novel part-aware compositional reconstruction method, called GaussianBlock, that enables semantically coherent and disentangled representations, allowing for precise and physical editing akin to building blocks, while simultaneously maintaining high fidelity. Our GaussianBlock introduces a hybrid representation that leverages the advantages of both primitives, known for their flexible actionability and editability, and 3D Gaussians, which excel in reconstruction quality. Specifically, we achieve semantically coherent primitives through a novel attention-guided centering loss derived from 2D semantic priors, complemented by a dynamic splitting and fusion strategy. Furthermore, we utilize 3D Gaussians that hybridize with primitives to refine structural details and enhance fidelity. Additionally, a binding inheritance strategy is employed to strengthen and maintain the connection between the two. Our reconstructed scenes are evidenced to be disentangled, compositional, and compact across diverse benchmarks, enabling seamless, direct and precise editing while maintaining high quality.

Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable success in computer vision tasks. However, their deep architectures often lead to high computational redundancy, making them less suitable for resource-constrained environments, such as edge devices. This paper introduces ParFormer, a novel vision transformer that addresses this challenge by incorporating a Parallel Mixer and a Sparse Channel Attention Patch Embedding (SCAPE). By combining convolutional and attention mechanisms, ParFormer improves feature extraction. This makes spatial feature extraction more efficient and cuts down on unnecessary computation. The SCAPE module further reduces computational redundancy while preserving essential feature information during down-sampling. Experimental results on the ImageNet-1K dataset show that ParFormer-T achieves 78.9\% Top-1 accuracy with a high throughput on a GPU that outperforms other small models with 2.56$\times$ higher throughput than MobileViT-S, 0.24\% faster than FasterNet-T2, and 1.79$\times$ higher than EdgeNeXt-S. For edge device deployment, ParFormer-T excels with a throughput of 278.1 images/sec, which is 1.38 $\times$ higher than EdgeNeXt-S and 2.36$\times$ higher than MobileViT-S, making it highly suitable for real-time applications in resource-constrained settings. The larger variant, ParFormer-L, reaches 83.5\% Top-1 accuracy, offering a balanced trade-off between accuracy and efficiency, surpassing many state-of-the-art models. In COCO object detection, ParFormer-M achieves 40.7 AP for object detection and 37.6 AP for instance segmentation, surpassing models like ResNet-50, PVT-S and PoolFormer-S24 with significantly higher efficiency. These results validate ParFormer as a highly efficient and scalable model for both high-performance and resource-constrained scenarios, making it an ideal solution for edge-based AI applications.

Contrastive Language-Image Pre-training (CLIP) has been widely studied and applied in numerous applications. However, the emphasis on brief summary texts during pre-training prevents CLIP from understanding long descriptions. This issue is particularly acute regarding videos given that videos often contain abundant detailed contents. In this paper, we propose the VideoCLIP-XL (eXtra Length) model, which aims to unleash the long-description understanding capability of video CLIP models. Firstly, we establish an automatic data collection system and gather a large-scale VILD pre-training dataset with VIdeo and Long-Description pairs. Then, we propose Text-similarity-guided Primary Component Matching (TPCM) to better learn the distribution of feature space while expanding the long description capability. We also introduce two new tasks namely Detail-aware Description Ranking (DDR) and Hallucination-aware Description Ranking (HDR) for further understanding improvement. Finally, we construct a Long Video Description Ranking (LVDR) benchmark for evaluating the long-description capability more comprehensively. Extensive experimental results on widely-used text-video retrieval benchmarks with both short and long descriptions and our LVDR benchmark can fully demonstrate the effectiveness of our method.

We introduce AmbigNLG, a novel task designed to tackle the challenge of task ambiguity in instructions for Natural Language Generation (NLG). Ambiguous instructions often impede the performance of Large Language Models (LLMs), especially in complex NLG tasks. To tackle this issue, we propose an ambiguity taxonomy that categorizes different types of instruction ambiguities and refines initial instructions with clearer specifications. Accompanying this task, we present AmbigSNI-NLG, a dataset comprising 2,500 instances annotated to facilitate research in AmbigNLG. Through comprehensive experiments with state-of-the-art LLMs, we demonstrate that our method significantly enhances the alignment of generated text with user expectations, achieving up to a 15.02-point increase in ROUGE scores. Our findings highlight the critical importance of addressing task ambiguity to fully harness the capabilities of LLMs in NLG tasks. Furthermore, we confirm the effectiveness of our method in practical settings involving interactive ambiguity mitigation with users, underscoring the benefits of leveraging LLMs for interactive clarification.

Motivated by the huge success of Transformers in the field of natural language processing (NLP), Vision Transformers (ViTs) have been rapidly developed and achieved remarkable performance in various computer vision tasks. However, their huge model sizes and intensive computations hinder ViTs' deployment on embedded devices, calling for effective model compression methods, such as quantization. Unfortunately, due to the existence of hardware-unfriendly and quantization-sensitive non-linear operations, particularly {Softmax}, it is non-trivial to completely quantize all operations in ViTs, yielding either significant accuracy drops or non-negligible hardware costs. In response to challenges associated with \textit{standard ViTs}, we focus our attention towards the quantization and acceleration for \textit{efficient ViTs}, which not only eliminate the troublesome Softmax but also integrate linear attention with low computational complexity, and propose Trio-ViT accordingly. Specifically, at the algorithm level, we develop a {tailored post-training quantization engine} taking the unique activation distributions of Softmax-free efficient ViTs into full consideration, aiming to boost quantization accuracy. Furthermore, at the hardware level, we build an accelerator dedicated to the specific Convolution-Transformer hybrid architecture of efficient ViTs, thereby enhancing hardware efficiency. Extensive experimental results consistently prove the effectiveness of our Trio-ViT framework. {Particularly, we can gain up to $\uparrow$$\mathbf{3.6}\times$, $\uparrow$$\mathbf{5.0}\times$, and $\uparrow$$\mathbf{7.3}\times$ FPS under comparable accuracy over state-of-the-art ViT accelerators, as well as $\uparrow$$\mathbf{6.0}\times$, $\uparrow$$\mathbf{1.5}\times$, and $\uparrow$$\mathbf{2.1}\times$ DSP efficiency.} Codes are available at \url{//github.com/shihuihong214/Trio-ViT}.

Even in recent neural network architectures such as Transformers and Extended LSTM (xLSTM), and traditional ones like Convolutional Neural Networks, Activation Functions are an integral part of nearly all neural networks. They enable more effective training and capture nonlinear data patterns. More than 400 functions have been proposed over the last 30 years, including fixed or trainable parameters, but only a few are widely used. ReLU is one of the most frequently used, with GELU and Swish variants increasingly appearing. However, ReLU presents non-differentiable points and exploding gradient issues, while testing different parameters of GELU and Swish variants produces varying results, needing more parameters to adapt to datasets and architectures. This article introduces a novel set of activation functions called Zorro, a continuously differentiable and flexible family comprising five main functions fusing ReLU and Sigmoid. Zorro functions are smooth and adaptable, and serve as information gates, aligning with ReLU in the 0-1 range, offering an alternative to ReLU without the need for normalization, neuron death, or gradient explosions. Zorro also approximates functions like Swish, GELU, and DGELU, providing parameters to adjust to different datasets and architectures. We tested it on fully connected, convolutional, and transformer architectures to demonstrate its effectiveness.

Metamodels, or the regression analysis of Monte Carlo simulation results, provide a powerful tool to summarize simulation findings. However, an underutilized approach is the multilevel metamodel (MLMM) that accounts for the dependent data structure that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can improve the interpretability of simulation results, better account for complex simulation designs, and provide new insights into the generalizability of simulation findings.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.

北京阿比特科技有限公司