亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Near out-of-distribution detection (OOD) is a major challenge for deep neural networks. We demonstrate that large-scale pre-trained transformers can significantly improve the state-of-the-art (SOTA) on a range of near OOD tasks across different data modalities. For instance, on CIFAR-100 vs CIFAR-10 OOD detection, we improve the AUROC from 85% (current SOTA) to more than 96% using Vision Transformers pre-trained on ImageNet-21k. On a challenging genomics OOD detection benchmark, we improve the AUROC from 66% to 77% using transformers and unsupervised pre-training. To further improve performance, we explore the few-shot outlier exposure setting where a few examples from outlier classes may be available; we show that pre-trained transformers are particularly well-suited for outlier exposure, and that the AUROC of OOD detection on CIFAR-100 vs CIFAR-10 can be improved to 98.7% with just 1 image per OOD class, and 99.46% with 10 images per OOD class. For multi-modal image-text pre-trained transformers such as CLIP, we explore a new way of using just the names of outlier classes as a sole source of information without any accompanying images, and show that this outperforms previous SOTA on standard vision OOD benchmark tasks.

相關內容

To be robust enough for widespread adoption, document analysis systems involving machine learning models must be able to respond correctly to inputs that fall outside of the data distribution that was used to generate the data on which the models were trained. This paper explores the ability of text classifiers trained on standard document classification datasets to generalize to out-of-distribution documents at inference time. We take the Tobacco-3482 and RVL-CDIP datasets as a starting point and generate new out-of-distribution evaluation datasets in order to analyze the generalization performance of models trained on these standard datasets. We find that models trained on the smaller Tobacco-3482 dataset perform poorly on our new out-of-distribution data, while text classification models trained on the larger RVL-CDIP exhibit smaller performance drops.

Pretrained transformers achieve the state of the art across tasks in natural language processing, motivating researchers to investigate their inner mechanisms. One common direction is to understand what features are important for prediction. In this paper, we apply information bottlenecks to analyze the attribution of each feature for prediction on a black-box model. We use BERT as the example and evaluate our approach both quantitatively and qualitatively. We show the effectiveness of our method in terms of attribution and the ability to provide insight into how information flows through layers. We demonstrate that our technique outperforms two competitive methods in degradation tests on four datasets. Code is available at //github.com/bazingagin/IBA.

In this paper, we argue that the unsatisfactory out-of-distribution (OOD) detection performance of neural networks is mainly due to the SoftMax loss anisotropy and propensity to produce low entropy probability distributions in disagreement with the principle of maximum entropy. Current out-of-distribution (OOD) detection approaches usually do not directly fix the SoftMax loss drawbacks, but rather build techniques to circumvent it. Unfortunately, those methods usually produce undesired side effects (e.g., classification accuracy drop, additional hyperparameters, slower inferences, and collecting extra data). In the opposite direction, we propose replacing SoftMax loss with a novel loss function that does not suffer from the mentioned weaknesses. The proposed IsoMax loss is isotropic (exclusively distance-based) and provides high entropy posterior probability distributions. Replacing the SoftMax loss by IsoMax loss requires no model or training changes. Additionally, the models trained with IsoMax loss produce as fast and energy-efficient inferences as those trained using SoftMax loss. Moreover, no classification accuracy drop is observed. The proposed method does not rely on outlier/background data, hyperparameter tuning, temperature calibration, feature extraction, metric learning, adversarial training, ensemble procedures, or generative models. Our experiments showed that IsoMax loss works as a seamless SoftMax loss drop-in replacement that significantly improves neural networks' OOD detection performance. Hence, it may be used as a baseline OOD detection approach to be combined with current or future OOD detection techniques to achieve even higher results.

This paper presents a Simple and effective unsupervised adaptation method for Robust Object Detection (SimROD). To overcome the challenging issues of domain shift and pseudo-label noise, our method integrates a novel domain-centric augmentation method, a gradual self-labeling adaptation procedure, and a teacher-guided fine-tuning mechanism. Using our method, target domain samples can be leveraged to adapt object detection models without changing the model architecture or generating synthetic data. When applied to image corruptions and high-level cross-domain adaptation benchmarks, our method outperforms prior baselines on multiple domain adaptation benchmarks. SimROD achieves new state-of-the-art on standard real-to-synthetic and cross-camera setup benchmarks. On the image corruption benchmark, models adapted with our method achieved a relative robustness improvement of 15-25% AP50 on Pascal-C and 5-6% AP on COCO-C and Cityscapes-C. On the cross-domain benchmark, our method outperformed the best baseline performance by up to 8% AP50 on Comic dataset and up to 4% on Watercolor dataset.

Although pretrained Transformers such as BERT achieve high accuracy on in-distribution examples, do they generalize to new distributions? We systematically measure out-of-distribution (OOD) generalization for various NLP tasks by constructing a new robustness benchmark with realistic distribution shifts. We measure the generalization of previous models including bag-of-words models, ConvNets, and LSTMs, and we show that pretrained Transformers' performance declines are substantially smaller. Pretrained transformers are also more effective at detecting anomalous or OOD examples, while many previous models are frequently worse than chance. We examine which factors affect robustness, finding that larger models are not necessarily more robust, distillation can be harmful, and more diverse pretraining data can enhance robustness. Finally, we show where future work can improve OOD robustness.

Detecting rare objects from a few examples is an emerging problem. Prior works show meta-learning is a promising approach. But, fine-tuning techniques have drawn scant attention. We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task. Such a simple approach outperforms the meta-learning methods by roughly 2~20 points on current benchmarks and sometimes even doubles the accuracy of the prior methods. However, the high variance in the few samples often leads to the unreliability of existing benchmarks. We revise the evaluation protocols by sampling multiple groups of training examples to obtain stable comparisons and build new benchmarks based on three datasets: PASCAL VOC, COCO and LVIS. Again, our fine-tuning approach establishes a new state of the art on the revised benchmarks. The code as well as the pretrained models are available at //github.com/ucbdrive/few-shot-object-detection.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. We provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets in //github.com/cancam/LRP. Our source code can easily be adapted to other datasets as well.

As we move towards large-scale object detection, it is unrealistic to expect annotated training data for all object classes at sufficient scale, and so methods capable of unseen object detection are required. We propose a novel zero-shot method based on training an end-to-end model that fuses semantic attribute prediction with visual features to propose object bounding boxes for seen and unseen classes. While we utilize semantic features during training, our method is agnostic to semantic information for unseen classes at test-time. Our method retains the efficiency and effectiveness of YOLO for objects seen during training, while improving its performance for novel and unseen objects. The ability of state-of-art detection methods to learn discriminative object features to reject background proposals also limits their performance for unseen objects. We posit that, to detect unseen objects, we must incorporate semantic information into the visual domain so that the learned visual features reflect this information and leads to improved recall rates for unseen objects. We test our method on PASCAL VOC and MS COCO dataset and observed significant improvements on the average precision of unseen classes.

北京阿比特科技有限公司