Building a multi-modality multi-task neural network toward accurate and robust performance is a de-facto standard in perception task of autonomous driving. However, leveraging such data from multiple sensors to jointly optimize the prediction and planning tasks remains largely unexplored. In this paper, we present FusionAD, to the best of our knowledge, the first unified framework that fuse the information from two most critical sensors, camera and LiDAR, goes beyond perception task. Concretely, we first build a transformer based multi-modality fusion network to effectively produce fusion based features. In constrast to camera-based end-to-end method UniAD, we then establish a fusion aided modality-aware prediction and status-aware planning modules, dubbed FMSPnP that take advantages of multi-modality features. We conduct extensive experiments on commonly used benchmark nuScenes dataset, our FusionAD achieves state-of-the-art performance and surpassing baselines on average 15% on perception tasks like detection and tracking, 10% on occupancy prediction accuracy, reducing prediction error from 0.708 to 0.389 in ADE score and reduces the collision rate from 0.31% to only 0.12%.
Robust multisensor fusion of multi-modal measurements such as IMUs, wheel encoders, cameras, LiDARs, and GPS holds great potential due to its innate ability to improve resilience to sensor failures and measurement outliers, thereby enabling robust autonomy. To the best of our knowledge, this work is among the first to develop a consistent tightly-coupled Multisensor-aided Inertial Navigation System (MINS) that is capable of fusing the most common navigation sensors in an efficient filtering framework, by addressing the particular challenges of computational complexity, sensor asynchronicity, and intra-sensor calibration. In particular, we propose a consistent high-order on-manifold interpolation scheme to enable efficient asynchronous sensor fusion and state management strategy (i.e. dynamic cloning). The proposed dynamic cloning leverages motion-induced information to adaptively select interpolation orders to control computational complexity while minimizing trajectory representation errors. We perform online intrinsic and extrinsic (spatiotemporal) calibration of all onboard sensors to compensate for poor prior calibration and/or degraded calibration varying over time. Additionally, we develop an initialization method with only proprioceptive measurements of IMU and wheel encoders, instead of exteroceptive sensors, which is shown to be less affected by the environment and more robust in highly dynamic scenarios. We extensively validate the proposed MINS in simulations and large-scale challenging real-world datasets, outperforming the existing state-of-the-art methods, in terms of localization accuracy, consistency, and computation efficiency. We have also open-sourced our algorithm, simulator, and evaluation toolbox for the benefit of the community: //github.com/rpng/mins.
Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data especially on the task of volumetric medical image segmentation. Unlike previous SSL methods which focus on exploring highly confident pseudo-labels or developing consistency regularization schemes, our empirical findings suggest that inconsistent decoder features emerge naturally when two decoders strive to generate consistent predictions. Based on the observation, we first analyze the treasure of discrepancy in learning towards consistency, under both pseudo-labeling and consistency regularization settings, and subsequently propose a novel SSL method called LeFeD, which learns the feature-level discrepancy obtained from two decoders, by feeding the discrepancy as a feedback signal to the encoder. The core design of LeFeD is to enlarge the difference by training differentiated decoders, and then learn from the inconsistent information iteratively. We evaluate LeFeD against eight state-of-the-art (SOTA) methods on three public datasets. Experiments show LeFeD surpasses competitors without any bells and whistles such as uncertainty estimation and strong constraints, as well as setting a new state-of-the-art for semi-supervised medical image segmentation. Code is available at \textcolor{cyan}{//github.com/maxwell0027/LeFeD}
Urban time series data forecasting featuring significant contributions to sustainable development is widely studied as an essential task of the smart city. However, with the dramatic and rapid changes in the world environment, the assumption that data obey Independent Identically Distribution is undermined by the subsequent changes in data distribution, known as concept drift, leading to weak replicability and transferability of the model over unseen data. To address the issue, previous approaches typically retrain the model, forcing it to fit the most recent observed data. However, retraining is problematic in that it leads to model lag, consumption of resources, and model re-invalidation, causing the drift problem to be not well solved in realistic scenarios. In this study, we propose a new urban time series prediction model for the concept drift problem, which encodes the drift by considering the periodicity in the data and makes on-the-fly adjustments to the model based on the drift using a meta-dynamic network. Experiments on real-world datasets show that our design significantly outperforms state-of-the-art methods and can be well generalized to existing prediction backbones by reducing their sensitivity to distribution changes.
Clustering clients into groups that exhibit relatively homogeneous data distributions represents one of the major means of improving the performance of federated learning (FL) in non-independent and identically distributed (non-IID) data settings. Yet, the applicability of current state-of-the-art approaches remains limited as these approaches cluster clients based on information, such as the evolution of local model parameters, that is only obtainable through actual on-client training. On the other hand, there is a need to make FL models available to clients who are not able to perform the training themselves, as they do not have the processing capabilities required for training, or simply want to use the model without participating in the training. Furthermore, the existing alternative approaches that avert the training still require that individual clients have a sufficient amount of labeled data upon which the clustering is based, essentially assuming that each client is a data annotator. In this paper, we present REPA, an approach to client clustering in non-IID FL settings that requires neither training nor labeled data collection. REPA uses a novel supervised autoencoder-based method to create embeddings that profile a client's underlying data-generating processes without exposing the data to the server and without requiring local training. Our experimental analysis over three different datasets demonstrates that REPA delivers state-of-the-art model performance while expanding the applicability of cluster-based FL to previously uncovered use cases.
As an attractive enabling technology for next-generation wireless communications, network slicing supports diverse customized services in the global space-air-ground integrated network (SAGIN) with diverse resource constraints. In this paper, we dynamically consider three typical classes of radio access network (RAN) slices, namely high-throughput slices, low-delay slices and wide-coverage slices, under the same underlying physical SAGIN. The throughput, the service delay and the coverage area of these three classes of RAN slices are jointly optimized in a non-scalar form by considering the distinct channel features and service advantages of the terrestrial, aerial and satellite components of SAGINs. A joint central and distributed multi-agent deep deterministic policy gradient (CDMADDPG) algorithm is proposed for solving the above problem to obtain the Pareto optimal solutions. The algorithm first determines the optimal virtual unmanned aerial vehicle (vUAV) positions and the inter-slice sub-channel and power sharing by relying on a centralized unit. Then it optimizes the intra-slice sub-channel and power allocation, and the virtual base station (vBS)/vUAV/virtual low earth orbit (vLEO) satellite deployment in support of three classes of slices by three separate distributed units. Simulation results verify that the proposed method approaches the Pareto-optimal exploitation of multiple RAN slices, and outperforms the benchmarkers.
Datacenter capacity is growing exponentially to satisfy the increasing demand for emerging computationally-intensive applications, such as deep learning. This trend has led to concerns over datacenters' increasing energy consumption and carbon footprint. The basic prerequisite for optimizing a datacenter's energy- and carbon-efficiency is accurately monitoring and attributing energy consumption to specific users and applications. Since datacenter servers tend to be multi-tenant, i.e., they host many applications, server- and rack-level power monitoring alone does not provide insight into their resident applications' energy usage and carbon emissions. At the same time, current application-level energy monitoring and attribution techniques are intrusive: they require privileged access to servers and require coordinated support in hardware and software, which is not always possible in cloud. To address the problem, we design WattScope, a system for non-intrusively estimating the power consumption of individual applications using external measurements of a server's aggregate power usage without requiring direct access to the server's operating system or applications. Our key insight is that, based on an analysis of production traces, the power characteristics of datacenter workloads, e.g., low variability, low magnitude, and high periodicity, are highly amenable to disaggregation of a server's total power consumption into application-specific values. WattScope adapts and extends a machine learning-based technique for disaggregating building power and applies it to server- and rack-level power meter measurements in data centers. We evaluate WattScope's accuracy on a production workload and show that it yields high accuracy, e.g., often <10% normalized mean absolute error, and is thus a potentially useful tool for datacenters in externally monitoring application-level power usage.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.