Despite deep learning (DL) has achieved remarkable progress in various domains, the DL models are still prone to making mistakes. This issue necessitates effective debugging tools for DL practitioners to interpret the decision-making process within the networks. However, existing debugging methods often demand extra data or adjustments to the decision process, limiting their applicability. To tackle this problem, we present NeuroInspect, an interpretable neuron-based debugging framework with three key stages: counterfactual explanations, feature visualizations, and false correlation mitigation. Our debugging framework first pinpoints neurons responsible for mistakes in the network and then visualizes features embedded in the neurons to be human-interpretable. To provide these explanations, we introduce CLIP-Illusion, a novel feature visualization method that generates images representing features conditioned on classes to examine the connection between neurons and the decision layer. We alleviate convoluted explanations of the conventional visualization approach by employing class information, thereby isolating mixed properties. This process offers more human-interpretable explanations for model errors without altering the trained network or requiring additional data. Furthermore, our framework mitigates false correlations learned from a dataset under a stochastic perspective, modifying decisions for the neurons considered as the main causes. We validate the effectiveness of our framework by addressing false correlations and improving inferences for classes with the worst performance in real-world settings. Moreover, we demonstrate that NeuroInspect helps debug the mistakes of DL models through evaluation for human understanding. The code is openly available at //github.com/yeongjoonJu/NeuroInspect.
The autonomous driving community has shown significant interest in 3D occupancy prediction, driven by its exceptional geometric perception and general object recognition capabilities. To achieve this, current works try to construct a Tri-Perspective View (TPV) or Occupancy (OCC) representation extending from the Bird-Eye-View perception. However, compressed views like TPV representation lose 3D geometry information while raw and sparse OCC representation requires heavy but reducant computational costs. To address the above limitations, we propose Compact Occupancy TRansformer (COTR), with a geometry-aware occupancy encoder and a semantic-aware group decoder to reconstruct a compact 3D OCC representation. The occupancy encoder first generates a compact geometrical OCC feature through efficient explicit-implicit view transformation. Then, the occupancy decoder further enhances the semantic discriminability of the compact OCC representation by a coarse-to-fine semantic grouping strategy. Empirical experiments show that there are evident performance gains across multiple baselines, e.g., COTR outperforms baselines with a relative improvement of 8%-15%, demonstrating the superiority of our method.
Intelligent driving systems aim to achieve a zero-collision mobility experience, requiring interdisciplinary efforts to enhance safety performance. This work focuses on risk identification, the process of identifying and analyzing risks stemming from dynamic traffic participants and unexpected events. While significant advances have been made in the community, the current evaluation of different risk identification algorithms uses independent datasets, leading to difficulty in direct comparison and hindering collective progress toward safety performance enhancement. To address this limitation, we introduce \textbf{RiskBench}, a large-scale scenario-based benchmark for risk identification. We design a scenario taxonomy and augmentation pipeline to enable a systematic collection of ground truth risks under diverse scenarios. We assess the ability of ten algorithms to (1) detect and locate risks, (2) anticipate risks, and (3) facilitate decision-making. We conduct extensive experiments and summarize future research on risk identification. Our aim is to encourage collaborative endeavors in achieving a society with zero collisions. We have made our dataset and benchmark toolkit publicly on the project page: //hcis-lab.github.io/RiskBench/
Adaptive optimizers, such as Adam, have achieved remarkable success in deep learning. A key component of these optimizers is the so-called preconditioning matrix, providing enhanced gradient information and regulating the step size of each gradient direction. In this paper, we propose a novel approach to designing the preconditioning matrix by utilizing the gradient difference between two successive steps as the diagonal elements. These diagonal elements are closely related to the Hessian and can be perceived as an approximation of the inner product between the Hessian row vectors and difference of the adjacent parameter vectors. Additionally, we introduce an auto-switching function that enables the preconditioning matrix to switch dynamically between Stochastic Gradient Descent (SGD) and the adaptive optimizer. Based on these two techniques, we develop a new optimizer named AGD that enhances the generalization performance. We evaluate AGD on public datasets of Natural Language Processing (NLP), Computer Vision (CV), and Recommendation Systems (RecSys). Our experimental results demonstrate that AGD outperforms the state-of-the-art (SOTA) optimizers, achieving highly competitive or significantly better predictive performance. Furthermore, we analyze how AGD is able to switch automatically between SGD and the adaptive optimizer and its actual effects on various scenarios. The code is available at //github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers.
Accurate epidemic forecasting is a critical task in controlling disease transmission. Many deep learning-based models focus only on static or dynamic graphs when constructing spatial information, ignoring their relationship. Additionally, these models often rely on recurrent structures, which can lead to error accumulation and computational time consumption. To address the aforementioned problems, we propose a novel model called Backbone-based Dynamic Graph Spatio-Temporal Network (BDGSTN). Intuitively, the continuous and smooth changes in graph structure, make adjacent graph structures share a basic pattern. To capture this property, we use adaptive methods to generate static backbone graphs containing the primary information and temporal models to generate dynamic temporal graphs of epidemic data, fusing them to generate a backbone-based dynamic graph. To overcome potential limitations associated with recurrent structures, we introduce a linear model DLinear to handle temporal dependencies and combine it with dynamic graph convolution for epidemic forecasting. Extensive experiments on two datasets demonstrate that BDGSTN outperforms baseline models and ablation comparison further verifies the effectiveness of model components. Furthermore, we analyze and measure the significance of backbone and temporal graphs by using information metrics from different aspects. Finally, we compare model parameter volume and training time to confirm the superior complexity and efficiency of BDGSTN.
Generative models (GMs) have received increasing research interest for their remarkable capacity to achieve comprehensive understanding. However, their potential application in the domain of multi-modal tracking has remained relatively unexplored. In this context, we seek to uncover the potential of harnessing generative techniques to address the critical challenge, information fusion, in multi-modal tracking. In this paper, we delve into two prominent GM techniques, namely, Conditional Generative Adversarial Networks (CGANs) and Diffusion Models (DMs). Different from the standard fusion process where the features from each modality are directly fed into the fusion block, we condition these multi-modal features with random noise in the GM framework, effectively transforming the original training samples into harder instances. This design excels at extracting discriminative clues from the features, enhancing the ultimate tracking performance. To quantitatively gauge the effectiveness of our approach, we conduct extensive experiments across two multi-modal tracking tasks, three baseline methods, and three challenging benchmarks. The experimental results demonstrate that the proposed generative-based fusion mechanism achieves state-of-the-art performance, setting new records on LasHeR and RGBD1K.
Federated Learning (FL) has emerged as a promising paradigm to train machine learning models collaboratively while preserving data privacy. However, its widespread adoption faces several challenges, including scalability, heterogeneous data and devices, resource constraints, and security concerns. Despite its promise, FL has not been specifically adapted for community domains, primarily due to the wide-ranging differences in data types and context, devices and operational conditions, environmental factors, and stakeholders. In response to these challenges, we present a novel framework for Community-based Federated Learning called CommunityAI. CommunityAI enables participants to be organized into communities based on their shared interests, expertise, or data characteristics. Community participants collectively contribute to training and refining learning models while maintaining data and participant privacy within their respective groups. Within this paper, we discuss the conceptual architecture, system requirements, processes, and future challenges that must be solved. Finally, our goal within this paper is to present our vision regarding enabling a collaborative learning process within various communities.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.