亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a framework for efficiently transforming certain approximation algorithms into differentially-private variants, in a black-box manner. Specifically, our results focus on algorithms A that output an approximation to a function f of the form $(1-a)f(x)-k \leq A(x) \leq (1+a)f(x)+k$, where $k \in \mathbb{R}_{\geq 0}$ denotes additive error and $a \in [0,1)$ denotes multiplicative error can be``tuned" to small-enough values while incurring only a polynomial blowup in the running time/space. We show that such algorithms can be made DP without sacrificing accuracy, as long as the function f has small global sensitivity. We achieve these results by applying the smooth sensitivity framework developed by Nissim, Raskhodnikova, and Smith (STOC 2007). Our framework naturally applies to transform non-private FPRAS and FPTAS algorithms into $\epsilon$-DP approximation algorithms where the former case requires an additional postprocessing step. We apply our framework in the context of sublinear-time and sublinear-space algorithms, while preserving the nature of the algorithm in meaningful ranges of the parameters. Our results include the first (to the best of our knowledge) $\epsilon$-edge DP sublinear-time algorithm for estimating the number of triangles, the number of connected components, and the weight of a minimum spanning tree of a graph. In the area of streaming algorithms, our results include $\epsilon$-DP algorithms for estimating Lp-norms, distinct elements, and weighted minimum spanning tree for both insertion-only and turnstile streams. Our transformation also provides a private version of the smooth histogram framework, which is commonly used for converting streaming algorithms into sliding window variants, and achieves a multiplicative approximation to many problems, such as estimating Lp-norms, distinct elements, and the length of the longest increasing subsequence.

相關內容

Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGen\footnote{SecuCoGen has been uploaded as supplemental material and will be made publicly available after publication.}, a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.

We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling. Our framework invokes low-level controllers - either learned or implicit in position-command control - to stabilize imitation around expert demonstrations. We show that with (a) a suitable low-level stability guarantee and (b) a powerful enough generative model as our imitation learner, pure supervised behavior cloning can generate trajectories matching the per-time step distribution of essentially arbitrary expert trajectories in an optimal transport cost. Our analysis relies on a stochastic continuity property of the learned policy we call "total variation continuity" (TVC). We then show that TVC can be ensured with minimal degradation of accuracy by combining a popular data-augmentation regimen with a novel algorithmic trick: adding augmentation noise at execution time. We instantiate our guarantees for policies parameterized by diffusion models and prove that if the learner accurately estimates the score of the (noise-augmented) expert policy, then the distribution of imitator trajectories is close to the demonstrator distribution in a natural optimal transport distance. Our analysis constructs intricate couplings between noise-augmented trajectories, a technique that may be of independent interest. We conclude by empirically validating our algorithmic recommendations, and discussing implications for future research directions for better behavior cloning with generative modeling.

When translating words referring to the speaker, speech translation (ST) systems should not resort to default masculine generics nor rely on potentially misleading vocal traits. Rather, they should assign gender according to the speakers' preference. The existing solutions to do so, though effective, are hardly feasible in practice as they involve dedicated model re-training on gender-labeled ST data. To overcome these limitations, we propose the first inference-time solution to control speaker-related gender inflections in ST. Our approach partially replaces the (biased) internal language model (LM) implicitly learned by the ST decoder with gender-specific external LMs. Experiments on en->es/fr/it show that our solution outperforms the base models and the best training-time mitigation strategy by up to 31.0 and 1.6 points in gender accuracy, respectively, for feminine forms. The gains are even larger (up to 32.0 and 3.4) in the challenging condition where speakers' vocal traits conflict with their gender.

The community explored to build private inference frameworks for transformer-based large language models (LLMs) in a server-client setting, where the server holds the model parameters and the client inputs its private data (or prompt) for inference. However, these frameworks impose significant overhead when the private inputs are forward propagated through the original LLMs. In this paper, we show that substituting the computation- and communication-heavy operators in the transformer architecture with privacy-computing friendly approximations can greatly reduce the private inference costs while incurring very minor impact on model performance. Compared to state-of-the-art Iron (NeurIPS 2022), our privacy-computing friendly model inference pipeline achieves a $5\times$ acceleration in computation and an 80% reduction in communication overhead, while retaining nearly identical accuracy.

Prefetching is a crucial technique employed in traditional databases to enhance interactivity, particularly in the context of data exploitation. Data exploration is a query processing paradigm in which users search for insights buried in the data, often not knowing what exactly they are looking for. Data exploratory tools deal with multiple challenges such as the need for interactivity with no a priori knowledge being present to help with the system tuning. The state-of-the-art prefetchers are specifically designed for navigational workloads only, where the number of possible actions is limited. The prefetchers that work with SQL-based workloads, on the other hand, mainly rely on data logical addresses rather than the data semantics. They fail to predict complex access patterns in cases where the database size is substantial, resulting in an extensive address space, or when there is frequent co-accessing of data. In this paper, we propose SeLeP, a semantic prefetcher that makes prefetching decisions for both types of workloads, based on the encoding of the data values contained inside the accessed blocks. Following the popular path of using machine learning approaches to automatically learn the hidden patterns, we formulate the prefetching task as a time-series forecasting problem and use an encoder-decoder LSTM architecture to learn the data access pattern. Our extensive experiments, across real-life exploratory workloads, demonstrate that SeLeP improves the hit ratio up to 40% and reduces I/O time up to 45% compared to the state-of-the-art, attaining impressive 95% hit ratio and 80% I/O reduction on average.

Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern day applications can render existing algorithms prohibitively slow, while frequently, those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a $5.83$ approximation and runs in $O(n \log n)$ time, i.e., at least a factor $n$ faster than other state-of-the-art algorithms. The robustness of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a 9-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data.

We present a novel ML framework for modeling the wavelength-dependent gain of multiple EDFAs, based on semi-supervised, self-normalizing neural networks, enabling one-shot transfer learning. Our experiments on 22 EDFAs in Open Ireland and COSMOS testbeds show high-accuracy transfer-learning even when operated across different amplifier types.

We introduce two new stochastic conjugate frameworks for a class of nonconvex and possibly also nonsmooth optimization problems. These frameworks are built upon Stochastic Recursive Gradient Algorithm (SARAH) and we thus refer to them as Acc-Prox-CG-SARAH and Acc-Prox-CG-SARAH-RS, respectively. They are efficiently accelerated, easy to implement, tune free and can be smoothly extended and modified. We devise a deterministic restart scheme for stochastic optimization and apply it in our second stochastic conjugate framework, which serves the key difference between the two approaches. In addition, we apply the ProbAbilistic Gradient Estimator (PAGE) and further develop a practical variant, denoted as Acc-Prox-CG-SARAH-ST, in order to reduce potential computational overhead. We provide comprehensive and rigorous convergence analysis for all three approaches and establish linear convergence rates for unconstrained minimization problem with nonconvex and nonsmooth objective functions. Experiments have demonstrated that Acc-Prox-CG-SARAH and Acc-Prox-CG-SARAH-RS both outperform state-of-art methods consistently and Acc-Prox-CG-SARAH-ST can as well achieve comparable convergence speed. In terms of theory and experiments, we verify the strong computational efficiency of the deterministic restart scheme in stochastic optimization methods.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司