The performance of data fusion and tracking algorithms often depends on parameters that not only describe the sensor system, but can also be task-specific. While for the sensor system tuning these variables is time-consuming and mostly requires expert knowledge, intrinsic parameters of targets under track can even be completely unobservable until the system is deployed. With state-of-the-art sensor systems growing more and more complex, the number of parameters naturally increases, necessitating the automatic optimization of the model variables. In this paper, the parameters of an interacting multiple model (IMM) filter are optimized solely using measurements, thus without necessity for any ground-truth data. The resulting method is evaluated through an ablation study on simulated data, where the trained model manages to match the performance of a filter parametrized with ground-truth values.
Many practical problems involve estimating low dimensional statistical quantities with high-dimensional models and datasets. Several approaches address these estimation tasks based on the theory of influence functions, such as debiased/double ML or targeted minimum loss estimation. This paper introduces \textit{Monte Carlo Efficient Influence Functions} (MC-EIF), a fully automated technique for approximating efficient influence functions that integrates seamlessly with existing differentiable probabilistic programming systems. MC-EIF automates efficient statistical estimation for a broad class of models and target functionals that would previously require rigorous custom analysis. We prove that MC-EIF is consistent, and that estimators using MC-EIF achieve optimal $\sqrt{N}$ convergence rates. We show empirically that estimators using MC-EIF are at parity with estimators using analytic EIFs. Finally, we demonstrate a novel capstone example using MC-EIF for optimal portfolio selection.
The state-of-the-art face recognition systems are typically trained on a single computer, utilizing extensive image datasets collected from various number of users. However, these datasets often contain sensitive personal information that users may hesitate to disclose. To address potential privacy concerns, we explore the application of federated learning, both with and without secure aggregators, in the context of both supervised and unsupervised face recognition systems. Federated learning facilitates the training of a shared model without necessitating the sharing of individual private data, achieving this by training models on decentralized edge devices housing the data. In our proposed system, each edge device independently trains its own model, which is subsequently transmitted either to a secure aggregator or directly to the central server. To introduce diverse data without the need for data transmission, we employ generative adversarial networks to generate imposter data at the edge. Following this, the secure aggregator or central server combines these individual models to construct a global model, which is then relayed back to the edge devices. Experimental findings based on the CelebA datasets reveal that employing federated learning in both supervised and unsupervised face recognition systems offers dual benefits. Firstly, it safeguards privacy since the original data remains on the edge devices. Secondly, the experimental results demonstrate that the aggregated model yields nearly identical performance compared to the individual models, particularly when the federated model does not utilize a secure aggregator. Hence, our results shed light on the practical challenges associated with privacy-preserving face image training, particularly in terms of the balance between privacy and accuracy.
One key challenge in Artificial Life is designing systems that display an emergence of complex behaviors. Many such systems depend on a high-dimensional parameter space, only a small subset of which displays interesting dynamics. Focusing on the case of continuous systems, we introduce the 'Phase Transition Finder'(PTF) algorithm, which can be used to efficiently generate parameters lying at the border between two phases. We argue that such points are more likely to display complex behaviors, and confirm this by applying PTF to Lenia showing it can increase the frequency of interesting behaviors more than two-fold, while remaining efficient enough for large-scale searches.
Subsampling algorithms for various parametric regression models with massive data have been extensively investigated in recent years. However, all existing studies on subsampling heavily rely on clean massive data. In practical applications, the observed covariates may suffer from inaccuracies due to measurement errors. To address the challenge of large datasets with measurement errors, this study explores two subsampling algorithms based on the corrected likelihood approach: the optimal subsampling algorithm utilizing inverse probability weighting and the perturbation subsampling algorithm employing random weighting assuming a perfectly known distribution. Theoretical properties for both algorithms are provided. Numerical simulations and two real-world examples demonstrate the effectiveness of these proposed methods compared to other uncorrected algorithms.
Dense retrieval methods have demonstrated promising performance in multilingual information retrieval, where queries and documents can be in different languages. However, dense retrievers typically require a substantial amount of paired data, which poses even greater challenges in multilingual scenarios. This paper introduces UMR, an Unsupervised Multilingual dense Retriever trained without any paired data. Our approach leverages the sequence likelihood estimation capabilities of multilingual language models to acquire pseudo labels for training dense retrievers. We propose a two-stage framework which iteratively improves the performance of multilingual dense retrievers. Experimental results on two benchmark datasets show that UMR outperforms supervised baselines, showcasing the potential of training multilingual retrievers without paired data, thereby enhancing their practicality. Our source code, data, and models are publicly available at //github.com/MiuLab/UMR
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.