亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Navigating the vast scientific literature often starts with browsing a paper's abstract. However, when a reader seeks additional information, not present in the abstract, they face a costly cognitive chasm during their dive into the full text. To bridge this gap, we introduce recursively expandable abstracts, a novel interaction paradigm that dynamically expands abstracts by progressively incorporating additional information from the papers' full text. This lightweight interaction allows scholars to specify their information needs by quickly brushing over the abstract or selecting AI-suggested expandable entities. Relevant information is synthesized using a retrieval-augmented generation approach, presented as a fluid, threaded expansion of the abstract, and made efficiently verifiable via attribution to relevant source-passages in the paper. Through a series of user studies, we demonstrate the utility of recursively expandable abstracts and identify future opportunities to support low-effort and just-in-time exploration of long-form information contexts through LLM-powered interactions.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 線性的 · 離散化 · 原點 · 優化器 ·
2024 年 5 月 27 日

Elliptic reconstruction property, originally introduced by Makridakis and Nochetto for linear parabolic problems, is a well-known tool to derive optimal a posteriori error estimates. No such results are known for nonlinear and nonsmooth problems such as parabolic variational inequalities (VIs). This article establishes the elliptic reconstruction property for parabolic VIs and derives a posteriori error estimates in $L^{\infty}(0,T;L^{2}(\Omega))$. The estimator consists of discrete complementarity terms and standard residual. As an application, the residual-type error estimates are presented.

This paper shows that the dimensionality reduction methods, UMAP and t-SNE, can be approximately recast as MAP inference methods corresponding to a generalized Wishart-based model introduced in ProbDR. This interpretation offers deeper theoretical insights into these algorithms, while introducing tools with which similar dimensionality reduction methods can be studied.

Serving generative inference of the large language model is a crucial component of contemporary AI applications. This paper focuses on deploying such services in a heterogeneous and cross-datacenter setting to mitigate the substantial inference costs typically associated with a single centralized datacenter. Towards this end, we propose HexGen, a flexible distributed inference engine that uniquely supports the asymmetric partition of generative inference computations over both tensor model parallelism and pipeline parallelism and allows for effective deployment across diverse GPUs interconnected by a fully heterogeneous network. We further propose a sophisticated scheduling algorithm grounded in constrained optimization that can adaptively assign asymmetric inference computation across the GPUs to fulfill inference requests while maintaining acceptable latency levels. We conduct an extensive evaluation to verify the efficiency of HexGen by serving the state-of-the-art Llama-2 (70B) model. The results suggest that HexGen can choose to achieve up to 2.3 times lower latency deadlines or tolerate up to 4 times more request rates compared with the homogeneous baseline given the same budget.

This paper introduces PipeFusion, a novel approach that harnesses multi-GPU parallelism to address the high computational and latency challenges of generating high-resolution images with diffusion transformers (DiT) models. PipeFusion splits images into patches and distributes the network layers across multiple devices. It employs a pipeline parallel manner to orchestrate communication and computations. By leveraging the high similarity between the input from adjacent diffusion steps, PipeFusion eliminates the waiting time in the pipeline by reusing the one-step stale feature maps to provide context for the current step. Our experiments demonstrate that it can generate higher image resolution where existing DiT parallel approaches meet OOM. PipeFusion significantly reduces the required communication bandwidth, enabling DiT inference to be hosted on GPUs connected via PCIe rather than the more costly NVLink infrastructure, which substantially lowers the overall operational expenses for serving DiT models. Our code is publicly available at //github.com/PipeFusion/PipeFusion.

Humans talk in daily conversations while aligning and negotiating the expressed meanings or common ground. Despite the impressive conversational abilities of the large generative language models, they do not consider the individual differences in contextual understanding in a shared situated environment. In this work, we propose MindDial, a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling. We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief. Then the next response is generated to resolve the belief difference and take task-related action. Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation. Experiments show that models with mind modeling can achieve higher task outcomes when aligning and negotiating common ground. The ablation study further validates the three-level belief design can aggregate information and improve task outcomes in both cooperative and negotiating settings.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司