We consider network autoregressive models for count data with a non-random time-varying neighborhood structure. The main methodological contribution is the development of conditions that guarantee stability and valid statistical inference. We consider both cases of fixed and increasing network dimension and we show that quasi-likelihood inference provides consistent and asymptotically normally distributed estimators. The work is complemented by simulation results and a data example.
Autoregressive models are a class of time series models that are important in both applied and theoretical statistics. Typically, inferential devices such as confidence sets and hypothesis tests for time series models require nuanced asymptotic arguments and constructions. We present a simple alternative to such arguments that allow for the construction of finite sample valid inferential devices, using a data splitting approach. We prove the validity of our constructions, as well as the validity of related sequential inference tools. A set of simulation studies are presented to demonstrate the applicability of our methodology.
The selection of essential variables in logistic regression is vital because of its extensive use in medical studies, finance, economics and related fields. In this paper, we explore four main typologies (test-based, penalty-based, screening-based, and tree-based) of frequentist variable selection methods in logistic regression setup. Primary objective of this work is to give a comprehensive overview of the existing literature for practitioners. Underlying assumptions and theory, along with the specifics of their implementations, are detailed as well. Next, we conduct a thorough simulation study to explore the performances of fifteen different methods in terms of variable selection, estimation of coefficients, prediction accuracy as well as time complexity under various settings. We take low, moderate and high dimensional setups and consider different correlation structures for the covariates. A real-life application, using a high-dimensional gene expression data, is also included in this study to further understand the efficacy and consistency of the methods. Finally, based on our findings in the simulated data and in the real data, we provide recommendations for practitioners on the choice of variable selection methods under various contexts.
We propose the particle dual averaging (PDA) method, which generalizes the dual averaging method in convex optimization to the optimization over probability distributions with quantitative runtime guarantee. The algorithm consists of an inner loop and outer loop: the inner loop utilizes the Langevin algorithm to approximately solve for a stationary distribution, which is then optimized in the outer loop. The method can thus be interpreted as an extension of the Langevin algorithm to naturally handle nonlinear functional on the probability space. An important application of the proposed method is the optimization of neural network in the mean field regime, which is theoretically attractive due to the presence of nonlinear feature learning, but quantitative convergence rate can be challenging to obtain. By adapting finite-dimensional convex optimization theory into the space of measures, we analyze PDA in regularized empirical / expected risk minimization, and establish quantitative global convergence in learning two-layer mean field neural networks under more general settings. Our theoretical results are supported by numerical simulations on neural networks with reasonable size.
The deep neural network suffers from many fundamental issues in machine learning. For example, it often gets trapped into a local minimum in training, and its prediction uncertainty is hard to be assessed. To address these issues, we propose the so-called kernel-expanded stochastic neural network (K-StoNet) model, which incorporates support vector regression (SVR) as the first hidden layer and reformulates the neural network as a latent variable model. The former maps the input vector into an infinite dimensional feature space via a radial basis function (RBF) kernel, ensuring absence of local minima on its training loss surface. The latter breaks the high-dimensional nonconvex neural network training problem into a series of low-dimensional convex optimization problems, and enables its prediction uncertainty easily assessed. The K-StoNet can be easily trained using the imputation-regularized optimization (IRO) algorithm. Compared to traditional deep neural networks, K-StoNet possesses a theoretical guarantee to asymptotically converge to the global optimum and enables the prediction uncertainty easily assessed. The performances of the new model in training, prediction and uncertainty quantification are illustrated by simulated and real data examples.
Networks can describe the structure of a wide variety of complex systems by specifying which pairs of entities in the system are connected. While such pairwise representations are flexible, they are not necessarily appropriate when the fundamental interactions involve more than two entities at the same time. Pairwise representations nonetheless remain ubiquitous, because higher-order interactions are often not recorded explicitly in network data. Here, we introduce a Bayesian approach to reconstruct latent higher-order interactions from ordinary pairwise network data. Our method is based on the principle of parsimony and only includes higher-order structures when there is sufficient statistical evidence for them. We demonstrate its applicability to a wide range of datasets, both synthetic and empirical.
When are inferences (whether Direct-Likelihood, Bayesian, or Frequentist) obtained from partial data valid? This paper answers this question by offering a new asymptotic theory about inference with missing data that is more general than existing theories. By using more powerful tools from real analysis and probability theory than those used in previous research, it proves that as the sample size increases and the extent of missingness decreases, the mean-loglikelihood function generated by partial data and that ignores the missingness mechanism will almost surely converge uniformly to that which would have been generated by complete data; and if the data are Missing at Random, this convergence depends only on sample size. Thus, inferences from partial data, such as posterior modes, uncertainty estimates, confidence intervals, likelihood ratios, test statistics, and indeed, all quantities or features derived from the partial-data loglikelihood function, will be consistently estimated. They will approximate their complete-data analogues. This adds to previous research which has only proved the consistency and asymptotic normality of the posterior mode, and developed separate theories for Direct-Likelihood, Bayesian, and Frequentist inference. Practical implications of this result are discussed, and the theory is verified using a previous study of International Human Rights Law.
Quantum machine learning is a fast emerging field that aims to tackle machine learning using quantum algorithms and quantum computing. Due to the lack of physical qubits and an effective means to map real-world data from Euclidean space to Hilbert space, most of these methods focus on quantum analogies or process simulations rather than devising concrete architectures based on qubits. In this paper, we propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Decompositional Quantum Graph Neural Network (DQGNN). DQGNN implements the GNN theoretical framework using the tensor product and unity matrices representation, which greatly reduces the number of model parameters required. When controlled by a classical computer, DQGNN can accommodate arbitrarily sized graphs by processing substructures from the input graph using a modestly-sized quantum device. The architecture is based on a novel mapping from real-world data to Hilbert space. This mapping maintains the distance relations present in the data and reduces information loss. Experimental results show that the proposed method outperforms competitive state-of-the-art models with only 1.68\% parameters compared to those models.
In this short note, we reify the connection between work on the storage capacity problem in wide two-layer treelike neural networks and the rapidly-growing body of literature on kernel limits of wide neural networks. Concretely, we observe that the "effective order parameter" studied in the statistical mechanics literature is exactly equivalent to the infinite-width Neural Network Gaussian Process Kernel. This correspondence connects the expressivity and trainability of wide two-layer neural networks.
Graph neural network (GNN) has shown superior performance in dealing with graphs, which has attracted considerable research attention recently. However, most of the existing GNN models are primarily designed for graphs in Euclidean spaces. Recent research has proven that the graph data exhibits non-Euclidean latent anatomy. Unfortunately, there was rarely study of GNN in non-Euclidean settings so far. To bridge this gap, in this paper, we study the GNN with attention mechanism in hyperbolic spaces at the first attempt. The research of hyperbolic GNN has some unique challenges: since the hyperbolic spaces are not vector spaces, the vector operations (e.g., vector addition, subtraction, and scalar multiplication) cannot be carried. To tackle this problem, we employ the gyrovector spaces, which provide an elegant algebraic formalism for hyperbolic geometry, to transform the features in a graph; and then we propose the hyperbolic proximity based attention mechanism to aggregate the features. Moreover, as mathematical operations in hyperbolic spaces could be more complicated than those in Euclidean spaces, we further devise a novel acceleration strategy using logarithmic and exponential mappings to improve the efficiency of our proposed model. The comprehensive experimental results on four real-world datasets demonstrate the performance of our proposed hyperbolic graph attention network model, by comparisons with other state-of-the-art baseline methods.
Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.