亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recurrent models for sequences have been recently successful at many tasks, especially for language modeling and machine translation. Nevertheless, it remains challenging to extract good representations from these models. For instance, even though language has a clear hierarchical structure going from characters through words to sentences, it is not apparent in current language models. We propose to improve the representation in sequence models by augmenting current approaches with an autoencoder that is forced to compress the sequence through an intermediate discrete latent space. In order to propagate gradients though this discrete representation we introduce an improved semantic hashing technique. We show that this technique performs well on a newly proposed quantitative efficiency measure. We also analyze latent codes produced by the model showing how they correspond to words and phrases. Finally, we present an application of the autoencoder-augmented model to generating diverse translations.

相關內容

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

In recent years, the sequence-to-sequence learning neural networks with attention mechanism have achieved great progress. However, there are still challenges, especially for Neural Machine Translation (NMT), such as lower translation quality on long sentences. In this paper, we present a hierarchical deep neural network architecture to improve the quality of long sentences translation. The proposed network embeds sequence-to-sequence neural networks into a two-level category hierarchy by following the coarse-to-fine paradigm. Long sentences are input by splitting them into shorter sequences, which can be well processed by the coarse category network as the long distance dependencies for short sentences is able to be handled by network based on sequence-to-sequence neural network. Then they are concatenated and corrected by the fine category network. The experiments shows that our method can achieve superior results with higher BLEU(Bilingual Evaluation Understudy) scores, lower perplexity and better performance in imitating expression style and words usage than the traditional networks.

Multimodal machine learning is a core research area spanning the language, visual and acoustic modalities. The central challenge in multimodal learning involves learning representations that can process and relate information from multiple modalities. In this paper, we propose two methods for unsupervised learning of joint multimodal representations using sequence to sequence (Seq2Seq) methods: a \textit{Seq2Seq Modality Translation Model} and a \textit{Hierarchical Seq2Seq Modality Translation Model}. We also explore multiple different variations on the multimodal inputs and outputs of these seq2seq models. Our experiments on multimodal sentiment analysis using the CMU-MOSI dataset indicate that our methods learn informative multimodal representations that outperform the baselines and achieve improved performance on multimodal sentiment analysis, specifically in the Bimodal case where our model is able to improve F1 Score by twelve points. We also discuss future directions for multimodal Seq2Seq methods.

Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.

Embedding models for entities and relations are extremely useful for recovering missing facts in a knowledge base. Intuitively, a relation can be modeled by a matrix mapping entity vectors. However, relations reside on low dimension sub-manifolds in the parameter space of arbitrary matrices---for one reason, composition of two relations $\boldsymbol{M}_1,\boldsymbol{M}_2$ may match a third $\boldsymbol{M}_3$ (e.g. composition of relations currency_of_country and country_of_film usually matches currency_of_film_budget), which imposes compositional constraints to be satisfied by the parameters (i.e. $\boldsymbol{M}_1\cdot \boldsymbol{M}_2\approx \boldsymbol{M}_3$). In this paper we investigate a dimension reduction technique by training relations jointly with an autoencoder, which is expected to better capture compositional constraints. We achieve state-of-the-art on Knowledge Base Completion tasks with strongly improved Mean Rank, and show that joint training with an autoencoder leads to interpretable sparse codings of relations, helps discovering compositional constraints and benefits from compositional training. Our source code is released at github.com/tianran/glimvec.

Topic models have been widely explored as probabilistic generative models of documents. Traditional inference methods have sought closed-form derivations for updating the models, however as the expressiveness of these models grows, so does the difficulty of performing fast and accurate inference over their parameters. This paper presents alternative neural approaches to topic modelling by providing parameterisable distributions over topics which permit training by backpropagation in the framework of neural variational inference. In addition, with the help of a stick-breaking construction, we propose a recurrent network that is able to discover a notionally unbounded number of topics, analogous to Bayesian non-parametric topic models. Experimental results on the MXM Song Lyrics, 20NewsGroups and Reuters News datasets demonstrate the effectiveness and efficiency of these neural topic models.

Expressing in language is subjective. Everyone has a different style of reading and writing, apparently it all boil downs to the way their mind understands things (in a specific format). Language style transfer is a way to preserve the meaning of a text and change the way it is expressed. Progress in language style transfer is lagged behind other domains, such as computer vision, mainly because of the lack of parallel data, use cases, and reliable evaluation metrics. In response to the challenge of lacking parallel data, we explore learning style transfer from non-parallel data. We propose a model combining seq2seq, autoencoders, and adversarial loss to achieve this goal. The key idea behind the proposed models is to learn separate content representations and style representations using adversarial networks. Considering the problem of evaluating style transfer tasks, we frame the problem as sentiment transfer and evaluation using a sentiment classifier to calculate how many sentiments was the model able to transfer. We report our results on several kinds of models.

Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.

北京阿比特科技有限公司