Graph Neural Networks (GNNs) have shown success in learning from graph structured data containing node/edge feature information, with application to social networks, recommendation, fraud detection and knowledge graph reasoning. In this regard, various strategies have been proposed in the past to improve the expressiveness of GNNs. For example, one straightforward option is to simply increase the parameter size by either expanding the hid-den dimension or increasing the number of GNN layers. However, wider hidden layers can easily lead to overfitting, and incrementally adding more GNN layers can potentially result in over-smoothing.In this paper, we present a model-agnostic methodology, namely Network In Graph Neural Network (NGNN ), that allows arbitrary GNN models to increase their model capacity by making the model deeper. However, instead of adding or widening GNN layers, NGNN deepens a GNN model by inserting non-linear feedforward neural network layer(s) within each GNN layer. An analysis of NGNN as applied to a GraphSage base GNN on ogbn-products data demonstrate that it can keep the model stable against either node feature or graph structure perturbations. Furthermore, wide-ranging evaluation results on both node classification and link prediction tasks show that NGNN works reliably across diverse GNN architectures.For instance, it improves the test accuracy of GraphSage on the ogbn-products by 1.6% and improves the hits@100 score of SEAL on ogbl-ppa by 7.08% and the hits@20 score of GraphSage+Edge-Attr on ogbl-ppi by 6.22%. And at the time of this submission, it achieved two first places on the OGB link prediction leaderboard.
The prosperous development of e-commerce has spawned diverse recommendation systems. As a matter of fact, there exist rich and complex interactions among various types of nodes in real-world recommendation systems, which can be constructed as heterogeneous graphs. How learn representative node embedding is the basis and core of the personalized recommendation system. Meta-path is a widely used structure to capture the semantics beneath such interactions and show potential ability in improving node embedding. In this paper, we propose Heterogeneous Graph neural network for Recommendation (HGRec) which injects high-order semantic into node embedding via aggregating multi-hops meta-path based neighbors and fuses rich semantics via multiple meta-paths based on attention mechanism to get comprehensive node embedding. Experimental results demonstrate the importance of rich high-order semantics and also show the potentially good interpretability of HGRec.
Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront. This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving. In absence of reliable domain expertise, one might resort to inferring the latent graph structure, which is often difficult due to the vast search space of possible graphs. Here we introduce Pointer Graph Networks (PGNs) which augment sets or graphs with additional inferred edges for improved model expressivity. PGNs allow each node to dynamically point to another node, followed by message passing over these pointers. The sparsity of this adaptable graph structure makes learning tractable while still being sufficiently expressive to simulate complex algorithms. Critically, the pointing mechanism is directly supervised to model long-term sequences of operations on classical data structures, incorporating useful structural inductive biases from theoretical computer science. Qualitatively, we demonstrate that PGNs can learn parallelisable variants of pointer-based data structures, namely disjoint set unions and link/cut trees. PGNs generalise out-of-distribution to 5x larger test inputs on dynamic graph connectivity tasks, outperforming unrestricted GNNs and Deep Sets.
Graph Convolutional Networks (GCNs) have been widely used due to their outstanding performance in processing graph-structured data. However, the undirected graphs limit their application scope. In this paper, we extend spectral-based graph convolution to directed graphs by using first- and second-order proximity, which can not only retain the connection properties of the directed graph, but also expand the receptive field of the convolution operation. A new GCN model, called DGCN, is then designed to learn representations on the directed graph, leveraging both the first- and second-order proximity information. We empirically show the fact that GCNs working only with DGCNs can encode more useful information from graph and help achieve better performance when generalized to other models. Moreover, extensive experiments on citation networks and co-purchase datasets demonstrate the superiority of our model against the state-of-the-art methods.
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with the practical problems of fixed corpus level graph structure which do not support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.
Learning powerful data embeddings has become a center piece in machine learning, especially in natural language processing and computer vision domains. The crux of these embeddings is that they are pretrained on huge corpus of data in a unsupervised fashion, sometimes aided with transfer learning. However currently in the graph learning domain, embeddings learned through existing graph neural networks (GNNs) are task dependent and thus cannot be shared across different datasets. In this paper, we present a first powerful and theoretically guaranteed graph neural network that is designed to learn task-independent graph embeddings, thereafter referred to as deep universal graph embedding (DUGNN). Our DUGNN model incorporates a novel graph neural network (as a universal graph encoder) and leverages rich Graph Kernels (as a multi-task graph decoder) for both unsupervised learning and (task-specific) adaptive supervised learning. By learning task-independent graph embeddings across diverse datasets, DUGNN also reaps the benefits of transfer learning. Through extensive experiments and ablation studies, we show that the proposed DUGNN model consistently outperforms both the existing state-of-art GNN models and Graph Kernels by an increased accuracy of 3% - 8% on graph classification benchmark datasets.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We propose to solve this task by using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.
Recently popularized graph neural networks achieve the state-of-the-art accuracy on a number of standard benchmark datasets for graph-based semi-supervised learning, improving significantly over existing approaches. These architectures alternate between a propagation layer that aggregates the hidden states of the local neighborhood and a fully-connected layer. Perhaps surprisingly, we show that a linear model, that removes all the intermediate fully-connected layers, is still able to achieve a performance comparable to the state-of-the-art models. This significantly reduces the number of parameters, which is critical for semi-supervised learning where number of labeled examples are small. This in turn allows a room for designing more innovative propagation layers. Based on this insight, we propose a novel graph neural network that removes all the intermediate fully-connected layers, and replaces the propagation layers with attention mechanisms that respect the structure of the graph. The attention mechanism allows us to learn a dynamic and adaptive local summary of the neighborhood to achieve more accurate predictions. In a number of experiments on benchmark citation networks datasets, we demonstrate that our approach outperforms competing methods. By examining the attention weights among neighbors, we show that our model provides some interesting insights on how neighbors influence each other.
We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).