We propose a Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity, referred to as BOP2-TE, to improve the operating characteristics of the BOP2 design proposed by Zhou et al. (2017). BOP2-TE utilizes a Dirichlet-multinomial model to jointly model the distribution of toxicity and efficacy endpoints, making go/no-go decisions based on the posterior probability of toxicity and futility. In comparison to the original BOP2 and other existing designs, BOP2-TE offers the advantage of providing rigorous type I error control in cases where the treatment is toxic and futile, effective but toxic, or safe but futile, while optimizing power when the treatment is effective and safe. As a result, BOP2-TE enhances trial safety and efficacy. We also explore the incorporation of BOP2-TE into multiple-dose randomized trials for dose optimization, and consider a seamless design that integrates phase I dose finding with phase II randomized dose optimization. BOP2-TE is user-friendly, as its decision boundary can be determined prior to the trial's onset. Simulations demonstrate that BOP2-TE possesses desirable operating characteristics. We have developed a user-friendly web application as part of the BOP2 app, which is freely available at www.trialdesign.org.
Activity recognition is a challenging task due to the large scale of trajectory data and the need for prompt and efficient processing. Existing methods have attempted to mitigate this problem by employing traditional LSTM architectures, but these approaches often suffer from inefficiencies in processing large datasets. In response to this challenge, we propose VecLSTM, a novel framework that enhances the performance and efficiency of LSTM-based neural networks. Unlike conventional approaches, VecLSTM incorporates vectorization layers, leveraging optimized mathematical operations to process input sequences more efficiently. We have implemented VecLSTM and incorporated it into the MySQL database. To evaluate the effectiveness of VecLSTM, we compare its performance against a conventional LSTM model using a dataset comprising 1,467,652 samples with seven unique labels. Experimental results demonstrate superior accuracy and efficiency compared to the state-of-the-art, with VecLSTM achieving a validation accuracy of 85.57\%, a test accuracy of 85.47\%, and a weighted F1-score of 0.86. Furthermore, VecLSTM significantly reduces training time, offering a 26.2\% reduction compared to traditional LSTM models.
Video encompasses both visual and auditory data, creating a perceptually rich experience where these two modalities complement each other. As such, videos are a valuable type of media for the investigation of the interplay between audio and visual elements. Previous studies of audio-visual modalities primarily focused on either audio-visual representation learning or generative modeling of a modality conditioned on the other, creating a disconnect between these two branches. A unified framework that learns representation and generates modalities has not been developed yet. In this work, we introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation. The key approach of VAB is that rather than working with raw video frames and audio data, VAB performs representation learning and generative modeling within latent spaces. In particular, VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively. It then performs the pre-training task of visual-conditioned masked audio token prediction. This training strategy enables the model to engage in contextual learning and simultaneous video-to-audio generation. After the pre-training phase, VAB employs the iterative-decoding approach to rapidly generate audio tokens conditioned on visual features. Since VAB is a unified model, its backbone can be fine-tuned for various audio-visual downstream tasks. Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features, leading to competitive results in audio-visual retrieval and classification.
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling combinatorial optimization challenges. However, their practical realization confronts a dilemma: the requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices. To address this dilemma, here we first analyze the convergence behavior of QAOA, uncovering the origins of this dilemma and elucidating the intricate relationship between the employed mixer Hamiltonian, the specific problem at hand, and the permissible maximum circuit depth. Harnessing this understanding, we introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians tailored to distinct tasks and circuit depths. Systematic simulations, encompassing Ising models and weighted Max-Cut instances with up to 64 qubits, substantiate our theoretical findings, highlighting MG-Net's superior performance in terms of both approximation ratio and efficiency.
Metamodels, or the regression analysis of Monte Carlo simulation results, provide a powerful tool to summarize simulation findings. However, an underutilized approach is the multilevel metamodel (MLMM) that accounts for the dependent data structure that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can improve the interpretability of simulation results, better account for complex simulation designs, and provide new insights into the generalizability of simulation findings.
Although digital methods have significantly advanced morphology, practitioners are still challenged to understand and process tomographic specimen data. As automated processing of fossil data remains insufficient, morphologists still engage in intensive manual work to prepare digital fossils for research objectives. We present an open-source tool that enables morphologists to explore tomographic data similarly to the physical workflows that traditional fossil preparators experience in the field. We assessed the usability of our prototype for virtual fossil preparation and its accompanying tasks in the digital preparation workflow. Our findings indicate that integrating haptics into the virtual preparation workflow enhances the understanding of the morphology and material properties of working specimens. Our design's visuohaptic sculpting of fossil volumes was deemed straightforward and an improvement over current tomographic data processing methods.
Active perception enables robots to dynamically gather information by adjusting their viewpoints, a crucial capability for interacting with complex, partially observable environments. In this paper, we present AP-VLM, a novel framework that combines active perception with a Vision-Language Model (VLM) to guide robotic exploration and answer semantic queries. Using a 3D virtual grid overlaid on the scene and orientation adjustments, AP-VLM allows a robotic manipulator to intelligently select optimal viewpoints and orientations to resolve challenging tasks, such as identifying objects in occluded or inclined positions. We evaluate our system on two robotic platforms: a 7-DOF Franka Panda and a 6-DOF UR5, across various scenes with differing object configurations. Our results demonstrate that AP-VLM significantly outperforms passive perception methods and baseline models, including Toward Grounded Common Sense Reasoning (TGCSR), particularly in scenarios where fixed camera views are inadequate. The adaptability of AP-VLM in real-world settings shows promise for enhancing robotic systems' understanding of complex environments, bridging the gap between high-level semantic reasoning and low-level control.
In speech deepfake detection, one of the critical aspects is developing detectors able to generalize on unseen data and distinguish fake signals across different datasets. Common approaches to this challenge involve incorporating diverse data into the training process or fine-tuning models on unseen datasets. However, these solutions can be computationally demanding and may lead to the loss of knowledge acquired from previously learned data. Continual learning techniques offer a potential solution to this problem, allowing the models to learn from unseen data without losing what they have already learned. Still, the optimal way to apply these algorithms for speech deepfake detection remains unclear, and we do not know which is the best way to apply these algorithms to the developed models. In this paper we address this aspect and investigate whether, when retraining a speech deepfake detector, it is more effective to apply continual learning across the entire model or to update only some of its layers while freezing others. Our findings, validated across multiple models, indicate that the most effective approach among the analyzed ones is to update only the weights of the initial layers, which are responsible for processing the input features of the detector.
Reinforcement Learning (RL) has the potential to enable extreme off-road mobility by circumventing complex kinodynamic modeling, planning, and control by simulated end-to-end trial-and-error learning experiences. However, most RL methods are sample-inefficient when training in a large amount of manually designed simulation environments and struggle at generalizing to the real world. To address these issues, we introduce Verti-Selector (VS), an automatic curriculum learning framework designed to enhance learning efficiency and generalization by selectively sampling training terrain. VS prioritizes vertically challenging terrain with higher Temporal Difference (TD) errors when revisited, thereby allowing robots to learn at the edge of their evolving capabilities. By dynamically adjusting the sampling focus, VS significantly boosts sample efficiency and generalization within the VW-Chrono simulator built on the Chrono multi-physics engine. Furthermore, we provide simulation and physical results using VS on a Verti-4-Wheeler platform. These results demonstrate that VS can achieve 23.08% improvement in terms of success rate by efficiently sampling during training and robustly generalizing to the real world.
The remarkable achievements of ChatGPT and GPT-4 have sparked a wave of interest and research in the field of large language models for Artificial General Intelligence (AGI). These models provide us with intelligent solutions that are more similar to human thinking, enabling us to use general artificial intelligence to solve problems in various applications. However, in the field of remote sensing, the scientific literature on the implementation of AGI remains relatively scant. Existing AI-related research primarily focuses on visual understanding tasks while neglecting the semantic understanding of the objects and their relationships. This is where vision-language models excel, as they enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics. Vision-language models can go beyond recognizing the objects in an image and can infer the relationships between them, as well as generate natural language descriptions of the image. This makes them better suited for tasks that require both visual and textual understanding, such as image captioning, text-based image retrieval, and visual question answering. This paper provides a comprehensive review of the research on vision-language models in remote sensing, summarizing the latest progress, highlighting the current challenges, and identifying potential research opportunities. Specifically, we review the application of vision-language models in several mainstream remote sensing tasks, including image captioning, text-based image generation, text-based image retrieval, visual question answering, scene classification, semantic segmentation, and object detection. For each task, we briefly describe the task background and review some representative works. Finally, we summarize the limitations of existing work and provide some possible directions for future development.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.