Sparse and dense pseudo-relevance feedback (PRF) approaches perform poorly on challenging queries due to low precision in first-pass retrieval. However, recent advances in neural language models (NLMs) can re-rank relevant documents to top ranks, even when few are in the re-ranking pool. This paper first addresses the problem of poor pseudo-relevance feedback by simply applying re-ranking prior to query expansion and re-executing this query. We find that this change alone can improve the retrieval effectiveness of sparse and dense PRF approaches by 5-8%. Going further, we propose a new expansion model, Latent Entity Expansion (LEE), a fine-grained word and entity-based relevance modelling incorporating localized features. Finally, we include an "adaptive" component to the retrieval process, which iteratively refines the re-ranking pool during scoring using the expansion model, i.e. we "re-rank - expand - repeat". Using LEE, we achieve (to our knowledge) the best NDCG, MAP and R@1000 results on the TREC Robust 2004 and CODEC adhoc document datasets, demonstrating a significant advancement in expansion effectiveness.
Automation of High-Level Context (HLC) reasoning for intelligent systems at scale is imperative due to the unceasing accumulation of contextual data in the IoT era, the trend of the fusion of data from multi-sources, and the intrinsic complexity and dynamism of the context-based decision-making process. To mitigate this issue, we propose an automatic context reasoning framework CSM-H-R, which programmatically combines ontologies and states at runtime and the model-storage phase for attaining the ability to recognize meaningful HLC, and the resulting data representation can be applied to different reasoning techniques. Case studies are developed based on an intelligent elevator system in a smart campus setting. An implementation of the framework - a CSM Engine, and the experiments of translating the HLC reasoning into vector and matrix computing especially take care of the dynamic aspects of context and present the potentiality of using advanced mathematical and probabilistic models to achieve the next level of automation in integrating intelligent systems; meanwhile, privacy protection support is achieved by anonymization through label embedding and reducing information correlation. The code of this study is available at: //github.com/songhui01/CSM-H-R.
Training agents in multi-agent competitive games presents significant challenges due to their intricate nature. These challenges are exacerbated by dynamics influenced not only by the environment but also by opponents' strategies. Existing methods often struggle with slow convergence and instability. To address this, we harness the potential of imitation learning to comprehend and anticipate opponents' behavior, aiming to mitigate uncertainties with respect to the game dynamics. Our key contributions include: (i) a new multi-agent imitation learning model for predicting next moves of the opponents -- our model works with hidden opponents' actions and local observations; (ii) a new multi-agent reinforcement learning algorithm that combines our imitation learning model and policy training into one single training process; and (iii) extensive experiments in three challenging game environments, including an advanced version of the Star-Craft multi-agent challenge (i.e., SMACv2). Experimental results show that our approach achieves superior performance compared to existing state-of-the-art multi-agent RL algorithms.
Integration against, and hence sampling from, high-dimensional probability distributions is of essential importance in many application areas and has been an active research area for decades. One approach that has drawn increasing attention in recent years has been the generation of samples from a target distribution $\mathbb{P}_{\mathrm{tar}}$ using transport maps: if $\mathbb{P}_{\mathrm{tar}} = T_\# \mathbb{P}_{\mathrm{ref}}$ is the pushforward of an easily-sampled probability distribution $\mathbb{P}_{\mathrm{ref}}$ under the transport map $T$, then the application of $T$ to $\mathbb{P}_{\mathrm{ref}}$-distributed samples yields $\mathbb{P}_{\mathrm{tar}}$-distributed samples. This paper proposes the application of transport maps not just to random samples, but also to quasi-Monte Carlo points, higher-order nets, and sparse grids in order for the transformed samples to inherit the original convergence rates that are often better than $N^{-1/2}$, $N$ being the number of samples/quadrature nodes. Our main result is the derivation of an explicit transport map for the case that $\mathbb{P}_{\mathrm{tar}}$ is a mixture of simple distributions, e.g.\ a Gaussian mixture, in which case application of the transport map $T$ requires the solution of an \emph{explicit} ODE with \emph{closed-form} right-hand side. Mixture distributions are of particular applicability and interest since many methods proceed by first approximating $\mathbb{P}_{\mathrm{tar}}$ by a mixture and then sampling from that mixture (often using importance reweighting). Hence, this paper allows for the sampling step to provide a better convergence rate than $N^{-1/2}$ for all such methods.
Carbon footprint optimization (CFO) is important for sustainable heavy-duty e-truck transportation. We consider the CFO problem for timely transportation of e-trucks, where the truck travels from an origin to a destination across a national highway network subject to a deadline. The goal is to minimize the carbon footprint by orchestrating path planning, speed planning, and intermediary charging planning. We first show that it is NP-hard even just to find a feasible CFO solution. We then develop a $(1+\epsilon_F, 1+\epsilon_\beta)$ bi-criteria approximation algorithm that achieves a carbon footprint within a ratio of $(1+\epsilon_F)$ to the minimum with no deadline violation and at most a ratio of $(1+\epsilon_\beta)$ battery capacity violation (for any positive $\epsilon_F$ and $\epsilon_\beta$). Its time complexity is polynomial in the size of the highway network, $1/\epsilon_F$, and $1/\epsilon_\beta$. Such algorithmic results are among the best possible unless P=NP. Simulation results based on real-world traces show that our scheme reduces up to 11\% carbon footprint as compared to baseline alternatives considering only energy consumption but not carbon footprint.
The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.
The rapid expansion of foundation pre-trained models and their fine-tuned counterparts has significantly contributed to the advancement of machine learning. Leveraging pre-trained models to extract knowledge and expedite learning in real-world tasks, known as "Model Reuse", has become crucial in various applications. Previous research focuses on reusing models within a certain aspect, including reusing model weights, structures, and hypothesis spaces. This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend. ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference. This empowers deep learning practitioners to explore downstream tasks and identify the complementary advantages among different methods. ZhiJian is readily accessible at //github.com/zhangyikaii/lamda-zhijian facilitating seamless utilization of pre-trained models and streamlining the model reuse process for researchers and developers.
We introduce EgoSchema, a very long-form video question-answering dataset, and benchmark to evaluate long video understanding capabilities of modern vision and language systems. Derived from Ego4D, EgoSchema consists of over 5000 human curated multiple choice question answer pairs, spanning over 250 hours of real video data, covering a very broad range of natural human activity and behavior. For each question, EgoSchema requires the correct answer to be selected between five given options based on a three-minute-long video clip. While some prior works have proposed video datasets with long clip lengths, we posit that merely the length of the video clip does not truly capture the temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal certificate sets, a general notion for capturing the intrinsic temporal understanding length associated with a broad range of video understanding tasks & datasets. Based on this metric, we find EgoSchema to have intrinsic temporal lengths over 5.7x longer than the second closest dataset and 10x to 100x longer than any other video understanding dataset. Further, our evaluation of several current state-of-the-art video and language models shows them to be severely lacking in long-term video understanding capabilities. Even models with several billions of parameters achieve QA accuracy less than 33% (random is 20%) on the EgoSchema multi-choice question answering task, while humans achieve about 76% accuracy. We posit that \name{}{}, with its long intrinsic temporal structures and diverse complexity, would serve as a valuable evaluation probe for developing effective long-term video understanding systems in the future. Data and Zero-shot model evaluation code are open-sourced for both public and commercial use under the Ego4D license at //egoschema.github.io
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.