亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Knowledge graph embedding (KGE) models are often used to predict missing links for knowledge graphs (KGs). However, multiple KG embeddings can perform almost equally well for link prediction yet give conflicting predictions for unseen queries. This phenomenon is termed \textit{predictive multiplicity} in the literature. It poses substantial risks for KGE-based applications in high-stake domains but has been overlooked in KGE research. We define predictive multiplicity in link prediction, introduce evaluation metrics and measure predictive multiplicity for representative KGE methods on commonly used benchmark datasets. Our empirical study reveals significant predictive multiplicity in link prediction, with $8\%$ to $39\%$ testing queries exhibiting conflicting predictions. We address this issue by leveraging voting methods from social choice theory, significantly mitigating conflicts by $66\%$ to $78\%$ in our experiments.

相關內容

網絡中的鏈路預測(Link Prediction)是指如何通過已知的網絡節點以及網絡結構等信息預測網絡中尚未產生連邊的兩個節點之間產生鏈接的可能性。這種預測既包含了對未知鏈接(exist yet unknown links)的預測也包含了對未來鏈接(future links)的預測。該問題的研究在理論和應用兩個方面都具有重要的意義和價值 。

Economic models produce moment inequalities, which can be used to form tests of the true parameters. Confidence sets (CS) of the true parameters are derived by inverting these tests. However, they often lack analytical expressions, necessitating a grid search to obtain the CS numerically by retaining the grid points that pass the test. When the statistic is not asymptotically pivotal, constructing the critical value for each grid point in the parameter space adds to the computational burden. In this paper, we convert the computational issue into a classification problem by using a support vector machine (SVM) classifier. Its decision function provides a faster and more systematic way of dividing the parameter space into two regions: inside vs. outside of the confidence set. We label those points in the CS as 1 and those outside as -1. Researchers can train the SVM classifier on a grid of manageable size and use it to determine whether points on denser grids are in the CS or not. We establish certain conditions for the grid so that there is a tuning that allows us to asymptotically reproduce the test in the CS. This means that in the limit, a point is classified as belonging to the confidence set if and only if it is labeled as 1 by the SVM.

A pre-trained visual-language model, contrastive language-image pre-training (CLIP), successfully accomplishes various downstream tasks with text prompts, such as finding images or localizing regions within the image. Despite CLIP's strong multi-modal data capabilities, it remains limited in specialized environments, such as medical applications. For this purpose, many CLIP variants-i.e., BioMedCLIP, and MedCLIP-SAMv2-have emerged, but false positives related to normal regions persist. Thus, we aim to present a simple yet important goal of reducing false positives in medical anomaly detection. We introduce a Contrastive LAnguage Prompting (CLAP) method that leverages both positive and negative text prompts. This straightforward approach identifies potential lesion regions by visual attention to the positive prompts in the given image. To reduce false positives, we attenuate attention on normal regions using negative prompts. Extensive experiments with the BMAD dataset, including six biomedical benchmarks, demonstrate that CLAP method enhances anomaly detection performance. Our future plans include developing an automated fine prompting method for more practical usage.

Language models (LMs) are capable of acquiring elements of human-like syntactic knowledge. Targeted syntactic evaluation tests have been employed to measure how well they form generalizations about syntactic phenomena in high-resource languages such as English. However, we still lack a thorough understanding of LMs' capacity for syntactic generalizations in low-resource languages, which are responsible for much of the diversity of syntactic patterns worldwide. In this study, we develop targeted syntactic evaluation tests for three low-resource languages (Basque, Hindi, and Swahili) and use them to evaluate five families of open-access multilingual Transformer LMs. We find that some syntactic tasks prove relatively easy for LMs while others (agreement in sentences containing indirect objects in Basque, agreement across a prepositional phrase in Swahili) are challenging. We additionally uncover issues with publicly available Transformers, including a bias toward the habitual aspect in Hindi in multilingual BERT and underperformance compared to similar-sized models in XGLM-4.5B.

The goal of multi-objective optimization (MOO) is to learn under multiple, potentially conflicting, objectives. One widely used technique to tackle MOO is through linear scalarization, where one fixed preference vector is used to combine the objectives into a single scalar value for optimization. However, recent work (Hu et al., 2024) has shown linear scalarization often fails to capture the non-convex regions of the Pareto Front, failing to recover the complete set of Pareto optimal solutions. In light of the above limitations, this paper focuses on Tchebycheff scalarization that optimizes for the worst-case objective. In particular, we propose an online mirror descent algorithm for Tchebycheff scalarization, which we call OMD-TCH. We show that OMD-TCH enjoys a convergence rate of $O(\sqrt{\log m/T})$ where $m$ is the number of objectives and $T$ is the number of iteration rounds. We also propose a novel adaptive online-to-batch conversion scheme that significantly improves the practical performance of OMD-TCH while maintaining the same convergence guarantees. We demonstrate the effectiveness of OMD-TCH and the adaptive conversion scheme on both synthetic problems and federated learning tasks under fairness constraints, showing state-of-the-art performance.

Representing and exploiting multivariate signals require capturing complex relations between variables. We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians. We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem. Our new formulation allows to include a priori knowledge on signal properties, as well as on underlying graphs and their coefficients. We show the capability of our method to reconstruct graphs from signals in multiple synthetic settings, where our model outperforms previous baselines. Then, we exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods relying on many more features.

This paper presents the detection of DDoS attacks in IoT networks using machine learning models. Their rapid growth has made them highly susceptible to various forms of cyberattacks, many of whose security procedures are implemented in an irregular manner. It evaluates the efficacy of different machine learning models, such as XGBoost, K-Nearest Neighbours, Stochastic Gradient Descent, and Na\"ive Bayes, in detecting DDoS attacks from normal network traffic. Each model has been explained on several performance metrics, such as accuracy, precision, recall, and F1-score to understand the suitability of each model in real-time detection and response against DDoS threats. This comparative analysis will, therefore, enumerate the unique strengths and weaknesses of each model with respect to the IoT environments that are dynamic and hence moving in nature. The effectiveness of these models is analyzed, showing how machine learning can greatly enhance IoT security frameworks, offering adaptive, efficient, and reliable DDoS detection capabilities. These findings have shown the potential of machine learning in addressing the pressing need for robust IoT security solutions that can mitigate modern cyber threats and assure network integrity.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司