Autonomous conversational agents, i.e. chatbots, are becoming an increasingly common mechanism for enterprises to provide support to customers and partners. In order to rate chatbots, especially ones powered by Generative AI tools like Large Language Models (LLMs) we need to be able to accurately assess their performance. This is where chatbot benchmarking becomes important. In this paper, we propose the use of a novel benchmark that we call the E2E (End to End) benchmark, and show how the E2E benchmark can be used to evaluate accuracy and usefulness of the answers provided by chatbots, especially ones powered by LLMs. We evaluate an example chatbot at different levels of sophistication based on both our E2E benchmark, as well as other available metrics commonly used in the state of art, and observe that the proposed benchmark show better results compared to others. In addition, while some metrics proved to be unpredictable, the metric associated with the E2E benchmark, which uses cosine similarity performed well in evaluating chatbots. The performance of our best models shows that there are several benefits of using the cosine similarity score as a metric in the E2E benchmark.
Recent increase of remote-work, online meeting and tele-operation task makes people find that gesture for avatars and communication robots is more important than we have thought. It is one of the key factors to achieve smooth and natural communication between humans and AI systems and has been intensively researched. Current gesture generation methods are mostly based on deep neural network using text, audio and other information as the input, however, they generate gestures mainly based on audio, which is called a beat gesture. Although the ratio of the beat gesture is more than 70% of actual human gestures, content based gestures sometimes play an important role to make avatars more realistic and human-like. In this paper, we propose a attention-based contrastive learning for text-to-gesture (ACT2G), where generated gestures represent content of the text by estimating attention weight for each word from the input text. In the method, since text and gesture features calculated by the attention weight are mapped to the same latent space by contrastive learning, once text is given as input, the network outputs a feature vector which can be used to generate gestures related to the content. User study confirmed that the gestures generated by ACT2G were better than existing methods. In addition, it was demonstrated that wide variation of gestures were generated from the same text by changing attention weights by creators.
Building conversational agents that can have natural and knowledge-grounded interactions with humans requires understanding user utterances. Entity Linking (EL) is an effective and widely used method for understanding natural language text and connecting it to external knowledge. It is, however, shown that existing EL methods developed for annotating documents are suboptimal for conversations, where personal entities (e.g., "my cars") and concepts are essential for understanding user utterances. In this paper, we introduce a collection and a tool for entity linking in conversations. We collect EL annotations for 1327 conversational utterances, consisting of links to named entities, concepts, and personal entities. The dataset is used for training our toolkit for conversational entity linking, CREL. Unlike existing EL methods, CREL is developed to identify both named entities and concepts. It also utilizes coreference resolution techniques to identify personal entities and references to the explicit entity mentions in the conversations. We compare CREL with state-of-the-art techniques and show that it outperforms all existing baselines.
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks described by natural language. Recent advances in large language models (LLMs) have shown promise for translating natural language into robot action sequences for complex tasks. However, existing approaches either translate the natural language directly into robot trajectories or factor the inference process by decomposing language into task sub-goals and relying on a motion planner to execute each sub-goal. When complex environmental and temporal constraints are involved, inference over planning tasks must be performed jointly with motion plans using traditional task-and-motion planning (TAMP) algorithms, making factorization into subgoals untenable. Rather than using LLMs to directly plan task sub-goals, we instead perform few-shot translation from natural language task descriptions to an intermediate task representation that can then be consumed by a TAMP algorithm to jointly solve the task and motion plan. To improve translation, we automatically detect and correct both syntactic and semantic errors via autoregressive re-prompting, resulting in significant improvements in task completion. We show that our approach outperforms several methods using LLMs as planners in complex task domains. See our project website //yongchao98.github.io/MIT-REALM-AutoTAMP/ for prompts, videos, and code.
In order to assess the risks of a network system, it is important to investigate the behaviors of attackers after successful exploitation, which is called post-exploitation. Although there are various efficient tools supporting post-exploitation implementation, no application can automate this process. Most of the steps of this process are completed by experts who have profound knowledge of security, known as penetration testers or pen-testers. To this end, our study proposes the Raij\=u framework, a Reinforcement Learning (RL)-driven automation approach that assists pen-testers in quickly implementing the process of post-exploitation for security-level evaluation in network systems. We implement two RL algorithms, Advantage Actor-Critic (A2C) and Proximal Policy Optimization (PPO), to train specialized agents capable of making intelligent actions, which are Metasploit modules to automatically launch attacks of privileges escalation, gathering hashdump, and lateral movement. By leveraging RL, we aim to empower these agents with the ability to autonomously select and execute actions that can exploit vulnerabilities in target systems. This approach allows us to automate certain aspects of the penetration testing workflow, making it more efficient and responsive to emerging threats and vulnerabilities. The experiments are performed in four real environments with agents trained in thousands of episodes. The agents automatically select actions and launch attacks on the environments and achieve over 84\% of successful attacks with under 55 attack steps given. Moreover, the A2C algorithm has proved extremely effective in the selection of proper actions for automation of post-exploitation.
While 5G networks are already being deployed for commercial applications, Academia and industry are focusing their effort on the development and standardization of the next generations of mobile networks, i.e., 5G-Advance and 6G. Beyond 5G networks will revolutionize communications systems providing seamless connectivity, both in time and in space, to a unique ecosystem consisting of the convergence of the digital, physical, and human domains. In this scenario, NonTerrestrial Networks (NTN) will play a crucial role by providing ubiquitous, secure, and resilient infrastructure fully integrated into the overall system. The additional network complexity introduced by the third dimension of the architecture requires the interoperability of different network elements, enabled by the disaggregation and virtualization of network components, their interconnection by standard interfaces and orchestration by data-driven network artificial intelligence. The disaggregation paradigm foresees the division of the radio access network in different virtualized block of functions, introducing the concept of functional split. Wisely selecting the RAN functional split is possible to better exploit the system resources, obtaining costs saving, and to increase the system performances. In this paper, we firstly provide a discussion of the current 6G NTN development in terms of architectural solutions and then, we thoroughly analyze the impact of the typical NTN channel impairments on the available functional splits. Finally, the benefits of introducing the dynamic optimization of the functional split in NTN are analyzed, together with the foreseen challenges.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Imitation learning aims to extract knowledge from human experts' demonstrations or artificially created agents in order to replicate their behaviors. Its success has been demonstrated in areas such as video games, autonomous driving, robotic simulations and object manipulation. However, this replicating process could be problematic, such as the performance is highly dependent on the demonstration quality, and most trained agents are limited to perform well in task-specific environments. In this survey, we provide a systematic review on imitation learning. We first introduce the background knowledge from development history and preliminaries, followed by presenting different taxonomies within Imitation Learning and key milestones of the field. We then detail challenges in learning strategies and present research opportunities with learning policy from suboptimal demonstration, voice instructions and other associated optimization schemes.