亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conversational Recommender System (CRS) interacts with users through natural language to understand their preferences and provide personalized recommendations in real-time. CRS has demonstrated significant potential, prompting researchers to address the development of more realistic and reliable user simulators as a key focus. Recently, the capabilities of Large Language Models (LLMs) have attracted a lot of attention in various fields. Simultaneously, efforts are underway to construct user simulators based on LLMs. While these works showcase innovation, they also come with certain limitations that require attention. In this work, we aim to analyze the limitations of using LLMs in constructing user simulators for CRS, to guide future research. To achieve this goal, we conduct analytical validation on the notable work, iEvaLM. Through multiple experiments on two widely-used datasets in the field of conversational recommendation, we highlight several issues with the current evaluation methods for user simulators based on LLMs: (1) Data leakage, which occurs in conversational history and the user simulator's replies, results in inflated evaluation results. (2) The success of CRS recommendations depends more on the availability and quality of conversational history than on the responses from user simulators. (3) Controlling the output of the user simulator through a single prompt template proves challenging. To overcome these limitations, we propose SimpleUserSim, employing a straightforward strategy to guide the topic toward the target items. Our study validates the ability of CRS models to utilize the interaction information, significantly improving the recommendation results.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Continuity · MoDELS · Prompt · Learning ·
2024 年 5 月 6 日

Model editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM's input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed.

Large language models (LLMs) have shown increasing power on various natural language processing (NLP) tasks. However, tuning these models for downstream tasks usually needs exorbitant costs or is unavailable due to commercial considerations. Recently, black-box tuning has been proposed to address this problem by optimizing task-specific prompts without accessing the gradients and hidden representations. However, most existing works have yet fully exploited the potential of gradient-free optimization under the scenario of few-shot learning. In this paper, we describe BBT-RGB, a suite of straightforward and complementary techniques for enhancing the efficiency and performance of black-box optimization. Specifically, our method includes three plug-and-play components: (1) Two-stage derivative-free optimization strategy that facilitates fast convergence and mitigates overfitting; (2) Automatic verbalizer construction with its novel usage under few-shot settings; (3) Better prompt initialization policy based on instruction search and auto-selected demonstration. Extensive experiments across various tasks on natural language understanding and inference demonstrate the effectiveness of our method. Our codes are publicly available at //github.com/QiushiSun/BBT-RGB.

6G Open Radio Access Networks (ORAN) promises to open data interfaces to enable plug-and-play service Apps, many of which are consumer and business-facing. Opening up 6G access lowers the barrier to innovation but raises the challenge that the required communication specifications are not fully known to all service designers. As such, business innovators must either be familiar with 6G standards or consult with experts. Enabling consistent, unbiased, rapid, and low-cost requirement assessment and specification generation is crucial to the ORAN innovation ecosystem. Here, we discuss our initiative to bridge service specification generation gaps between network service providers and business innovators. We first review the state-of-the-art and motivation in 6G plug-and-play services and capabilities, potential use cases, and relevant advances in Large Language Models (LLMs). We identify an ample innovation space for hybrid use cases that may require diverse and variational wireless functionalities across its operating time. We show that the network specification can be automated and present the first automatic retrieval-augmented specification generation (RAG) framework for 6G use cases. To enable public acceptance and feedback, a website interface is also published for the research and industrial community to experiment with the RAG framework. We hope this review highlights the need and the emerging foundation models that advance this area and motivate researchers to engage with the framework.

Relevant language describing trends in data can be useful for generating summaries to help with readers' takeaways. However, the language employed in these often template-generated summaries tends to be simple, ranging from describing simple statistical information (e.g., extrema and trends) without additional context and richer language to provide actionable insights. Recent advances in Large Language Models (LLMs) have shown promising capabilities in capturing subtle nuances in language when describing information. This workshop paper specifically explores how LLMs can provide more actionable insights when describing trends by focusing on three dimensions of analytical narrative structure: semantic, rhetorical, and pragmatic. Building on prior research that examines visual and linguistic signatures for univariate line charts, we examine how LLMs can further leverage the semantic dimension of analytical narratives using quantified semantics to describe shapes in trends as people intuitively view them. These semantic descriptions help convey insights in a way that leads to a pragmatic outcome, i.e., a call to action, persuasion, warning vs. alert, and situational awareness. Finally, we identify rhetorical implications for how well these generated narratives align with the perceived shape of the data, thereby empowering users to make informed decisions and take meaningful actions based on these data insights.

The rapid advancement in Large Language Models (LLMs) has markedly enhanced the capabilities of language understanding and generation. However, the substantial model size poses hardware challenges, affecting both memory size for serving and inference latency for token generation. To address those challenges, we propose Dependency-aware Semi-structured Sparsity (DaSS), a novel method for the recent prevalent SwiGLU-based LLMs pruning. Our approach incorporates structural dependency into the weight magnitude-based unstructured pruning. We introduce an MLP-specific pruning metric that evaluates the importance of each weight by jointly considering its magnitude and its corresponding MLP intermediate activation norms. DaSS facilitates a balance between the adaptability offered by unstructured pruning and the structural consistency inherent in dependency-based structured pruning. Empirical evaluations on Mistral and LLaMA2 model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns but also maintains the computational efficiency of Wanda.

Large Language Models (LLMs) have witnessed rapid growth in emerging challenges and capabilities of language understanding, generation, and reasoning. Despite their remarkable performance in natural language processing-based applications, LLMs are susceptible to undesirable and erratic behaviors, including hallucinations, unreliable reasoning, and the generation of harmful content. These flawed behaviors undermine trust in LLMs and pose significant hurdles to their adoption in real-world applications, such as legal assistance and medical diagnosis, where precision, reliability, and ethical considerations are paramount. These could also lead to user dissatisfaction, which is currently inadequately assessed and captured. Therefore, to effectively and transparently assess users' satisfaction and trust in their interactions with LLMs, we design and develop LLMChain, a decentralized blockchain-based reputation system that combines automatic evaluation with human feedback to assign contextual reputation scores that accurately reflect LLM's behavior. LLMChain not only helps users and entities identify the most trustworthy LLM for their specific needs, but also provides LLM developers with valuable information to refine and improve their models. To our knowledge, this is the first time that a blockchain-based distributed framework for sharing and evaluating LLMs has been introduced. Implemented using emerging tools, LLMChain is evaluated across two benchmark datasets, showcasing its effectiveness and scalability in assessing seven different LLMs.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司